首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2367篇
  免费   218篇
  国内免费   2篇
  2587篇
  2023年   10篇
  2022年   25篇
  2021年   41篇
  2020年   25篇
  2019年   34篇
  2018年   35篇
  2017年   31篇
  2016年   47篇
  2015年   101篇
  2014年   104篇
  2013年   135篇
  2012年   171篇
  2011年   172篇
  2010年   111篇
  2009年   77篇
  2008年   141篇
  2007年   124篇
  2006年   117篇
  2005年   135篇
  2004年   136篇
  2003年   137篇
  2002年   128篇
  2001年   32篇
  2000年   27篇
  1999年   30篇
  1998年   17篇
  1997年   26篇
  1996年   22篇
  1995年   21篇
  1994年   14篇
  1993年   30篇
  1992年   19篇
  1991年   17篇
  1990年   13篇
  1989年   9篇
  1988年   13篇
  1987年   10篇
  1986年   14篇
  1985年   20篇
  1984年   18篇
  1983年   11篇
  1982年   27篇
  1981年   16篇
  1980年   17篇
  1979年   9篇
  1978年   11篇
  1976年   11篇
  1975年   11篇
  1974年   9篇
  1973年   12篇
排序方式: 共有2587条查询结果,搜索用时 15 毫秒
81.
Peanuts and other seed and grain crops are commonly contaminated with carcinogenic aflatoxins, secondary metabolites produced by Aspergillus flavus and A. parasiticus. Aflatoxin contamination of peanuts in the field can be reduced by 77–98% with biological control through the application of nontoxigenic strains of these species, which competitively exclude native aflatoxin-producing strains from developing peanuts. In this study, viable peanut seeds were artificially wounded and inoculated with field soil containing natural fungal populations that were supplemented with conidia of nontoxigenic A. flavus NRRL 21882 (niaD nitrate-nonutilizing mutant) and A. parasiticus NRRL 21369 (conidial color mutant). Increasing soil densities of applied nontoxigenic strains generally resulted in an increase in the incidence of seed colonization by applied nontoxigenic strains, a decrease in seed colonization by native A. flavus and A. parasiticus, and a decrease in aflatoxin concentration in seeds. Reduction of aflatoxins in peanut seeds depended on both the density and the aflatoxin-producing potential of native populations and on the fungal strain used for biological control. Wild-type strain A. flavus NRRL 21882 and its niaD mutant were equally effective in reducing aflatoxins in peanuts, indicating that nitrate-nonutilizing mutants, which are easily monitored in the field, can be used for evaluating the efficacy of biocontrol strains.  相似文献   
82.
Investigations carried out over the past 3 years have implicated a key role for sphingosine 1-phosphate (SPP) in angiogenesis and blood vessel maturation. SPP is capable of inducing almost every aspect of angiogenesis and vessel maturation in vitro, including endothelial cell chemotaxis, survival, proliferation, capillary morphogenesis and adherence antigen deployment, as well as stabilizing developing endothelial cell monolayers and recruitment of smooth muscle cells to maturing vessels. Acting in conjunction with protein angiogenic factors, SPP induces prolific vascular development in many established models of angiogenesis in vivo. Thus, SPP is a unique, potent and multifaceted angiogenic agent. While SPP induces angiogenic effects by ligating members of the endothelial differentiation gene (EDG) G-protein-coupled family of receptors, recent studies suggest that endogenously produced SPP may also account for the ability of tyrosine kinase receptors to induce cell migration. Thus, SPP provides a clear link between tyrosine kinase and G-protein-coupled receptor agonists involved in the angiogenic response. However, the mechanisms by which SPP exerts its effects on vascular cells remain unclear, conflicting and controversial. Precise definition of the signalling pathways by which SPP induces specific aspects of the angiogenic response promises to lead to new and effective therapeutic approaches to regulate angiogenesis at sites of tissue damage, neoplastic transformation and inflammation. This review will trace the discovery of SPP as a novel angiogenic factor as it outlines present information on the signalling pathways by which SPP induces its effects on cells of the developing vascular bed.  相似文献   
83.
The min system spatially regulates division through the topological regulation of MinCD, an inhibitor of cell division. MinCD was previously shown to inhibit division by preventing assembly of the Z ring (E. Bi and J. Lutkenhaus, J. Bacteriol. 175:1118-1125, 1993); however, this was questioned in a recent report (S. S. Justice, J. Garcia-Lara, and L. I. Rothfield, Mol. Microbiol. 37:410-423, 2000) which indicated that MinCD acted after Z-ring formation and prevented the recruitment of FtsA to the Z ring. This discrepancy was due in part to alternative fixation conditions. We have therefore reinvestigated the action of MinCD and avoided fixation by using green fluorescent protein (GFP) fusions to division proteins. MinCD prevented the localization of both FtsZ-GFP and ZipA-GFP, consistent with it preventing Z-ring assembly. Consistent with a direct interaction between FtsZ and the MinCD inhibitor, we find that increased FtsZ, but not FtsA, suppresses MinCD-induced lethality. Furthermore, strains carrying various alleles of ftsZ, selected on the basis of resistance to the inhibitor SulA, displayed variable resistance to MinCD. These results are consistent with FtsZ as the target of MinCD and confirm that this inhibitor prevents Z-ring assembly.  相似文献   
84.
85.
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which is activated in response to genotoxic insults by binding damaged DNA and attaching polymers of ADP-ribose to nuclear proteins at the expense of its substrate NAD+. In persons affected with ataxia telangiectasia (A-T), associated mutations in the ataxia telangiectasia mutated gene render cells unable to cope with the genotoxic stresses from ionizing radiation and oxidative damage, thus resulting in a higher concentration of unrepaired DNA damage and the activation of PARP in an uncontrolled manner. In primary A-T fibroblasts, we observed a 58-96% increase in PARP activity and a concomitant loss of cellular NAD+ and ATP content. PARP protein by Western blot analysis increased only slightly in these cells, supporting the observation that the steady state levels of DNA damage is higher in A-T cells than in normals. When treated with PARP inhibitors 3-aminobenzamide or 1,5-dihydroisoquinoline, cellular growth rates reached those observed in normal fibroblast cultures. The improvement of cellular growth and NAD+ levels in A-T cells with PARP inhibition suggests that the cellular metabolic status of A-T cells is compromised and the inhibition of PARP may relieve some of the drain on cellular pyridine nucleotides and ATP. Thus, therapy utilizing PARP inhibitors may provide a benefit for individuals affected with A-T.  相似文献   
86.
The use of spectrofluorimeter coupled to a reverse phase high performance liquid chromatography column permits selective detection of indole-3-acetic acid at the low picogram level. The value of the technique is demonstrated by the analysis of endogenous IAA in elongating shoots, xylem sap and callus of Douglas-fir. The data are also used to illustrate a procedure whereby the accuracy of chromatographic analyses can be verified within definable probability limits.Abbreviations GC-MS combined gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - IAA indole-3-acetic acid - SEC steric exclusion chromatography - SICM selected ion current monitoring Technical Paper No. 5379 from the Oregon State University Agricultural Experiment Station  相似文献   
87.
We have studied hypoxia-induced inactivation of cells from three established human cell lines with different p53 status. Hypoxia was found to induce apoptosis in cells expressing wild-type p53 (MCF-7 cells), but not in cells where p53 is either mutated (T-47D cells), or abrogated by expression of the HPV18 E6 oncoprotein (NHIK 3025 cells). Apoptosis was demonstrated by DNA fragmentation, using agarose gel electrophoresis of DNA and DNA nick end labeling (TUNEL). We demonstrate that extremely hypoxic conditions (<4 ppm O2) do not cause any change of expression in the p53 protein level in these three cell lines. In addition, the localization of p53 in MCF-7 cells was found exclusively in the nucleus in only some of the cells both under aerobic and hypoxic conditions. Furthermore, no correlation was found between the p53-expression level and whether or not a cell underwent apoptosis. Flow cytometric TUNEL analysis of MCF-7 cells revealed that initiation of apoptosis occurred in all phases of the cell cycle, although predominantly for cells in S phase. Apoptosis was observed only during a limited time window (i.e., ≈10 to ≈24 h) after the onset of extreme hypoxia. While 66% of the MCF-7 cells lost their ability to form visible colonies following 15 h exposure to extreme hypoxia, only ∼28% were induced to apoptosis, suggesting that ∼38% were inactivated by other death processes. Commitment to apoptotic cell death was observed in MCF-7 cells even for oxygen concentrations as high as 5000 ppm. Our present results indicate that the p53 status in these three tumor cell lines does not have any major influence on cell's survival following exposure to extremely hypoxic conditions, whereas following moderate hypoxia, cells expressing functional p53 enhanced their susceptibility to cell death. Taken together, although these results suggest that functional p53 might play a role in the induction of apoptosis during hypoxia, other factors seem to be equally important.  相似文献   
88.
Summary As an initial step towards developing a transposon mutagenesis system in tomato, the maize transposable element Ac was transformed into tomato plants via Agrobacterium tumefaciens. Southern analysis of leaf tissue indicated that in nine out of eleven transgenic plants, Ac excised from the T-DNA and reintegrated into new chromosomal locations. The comparison of Ac banding pattern in different leaves of the same primary transformant provided evidnece for transposition during later stages of transgenic plant development. There was no evidence of Ds mobilization in tomato transformants.  相似文献   
89.
The persistence and movement of strain JS414 of Xanthomonas campestris pv. campestris, which was genetically engineered to bioluminesce, were monitored during a limited field introduction. Bioluminescence and traditional dilution plate counts were determined. Strain JS414 was applied to cabbage plants and surrounding soil by mist inoculation, by wound inoculation, by scattering infested debris among plants, and by incorporating bacteria into the soil. Bioluminescent X. campestris pv. campestris was detected in plant samples and in the rhizosphere up to 6 weeks after inoculation. Movement to uninoculated plants was detected on one occasion, but movement from the immediate release area was not detected. Strain JS414 was detected in soil samples beneath mist- and wound-inoculated plants only at intentionally infested locations and in aerial samples only on the day of inoculation. Our bioluminescence methods proved to be as sensitive as plating methods for detecting the genetically engineered microorganisms in environmental samples. Our results demonstrate that transgenic incorporation of the luxCDABE operon provides a non-labor-intensive, sensitive detection method for monitoring genetically engineered microorganisms in nature.  相似文献   
90.
Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i) contain a secretion signal, (ii) are encoded by in planta induced genes, (iii) have similarity to haustorial proteins, (iv) are small and cysteine rich, (v) contain a known effector motif or a nuclear localization signal, (vi) are encoded by genes with long intergenic regions, (vii) contain internal repeats, and (viii) do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号