首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2336篇
  免费   216篇
  国内免费   2篇
  2023年   10篇
  2022年   16篇
  2021年   40篇
  2020年   25篇
  2019年   34篇
  2018年   36篇
  2017年   31篇
  2016年   47篇
  2015年   101篇
  2014年   103篇
  2013年   131篇
  2012年   170篇
  2011年   167篇
  2010年   111篇
  2009年   73篇
  2008年   137篇
  2007年   122篇
  2006年   116篇
  2005年   135篇
  2004年   136篇
  2003年   137篇
  2002年   126篇
  2001年   32篇
  2000年   27篇
  1999年   30篇
  1998年   17篇
  1997年   26篇
  1996年   22篇
  1995年   21篇
  1994年   14篇
  1993年   30篇
  1992年   19篇
  1991年   17篇
  1990年   13篇
  1989年   9篇
  1988年   13篇
  1987年   10篇
  1986年   14篇
  1985年   20篇
  1984年   18篇
  1983年   11篇
  1982年   27篇
  1981年   16篇
  1980年   17篇
  1979年   9篇
  1978年   11篇
  1976年   11篇
  1975年   11篇
  1974年   9篇
  1973年   12篇
排序方式: 共有2554条查询结果,搜索用时 281 毫秒
161.
162.
Broad-host-range plasmid RK2 encodes a post-segregational killing system, parDE, which contributes to the stable maintenance of this plasmid in Escherichia coli and many distantly related bacteria. The ParE protein is a toxin that inhibits cell growth, causes cell filamentation and eventually cell death. The ParD protein is a specific ParE antitoxin. In this work, the in vitro activities of these two proteins were examined. The ParE protein was found to inhibit DNA synthesis using an E. coli oriC supercoiled template and a replication-proficient E. coli extract. Moreover, ParE inhibited the early stages of both chromosomal and plasmid DNA replication, as measured by the DnaB helicase- and gyrase-dependent formation of FI*, a highly unwound form of supercoiled DNA. The presence of ParD prevented these inhibitory activities of ParE. We also observed that the addition of ParE to supercoiled DNA plus gyrase alone resulted in the formation of a cleavable gyrase-DNA complex that was converted to a linear DNA form upon addition of sodium dodecyl sulphate (SDS). Adding ParD before or after the addition of ParE prevented the formation of this cleavable complex. These results demonstrate that the target of ParE toxin activity in vitro is E. coli gyrase.  相似文献   
163.
A novel Respirovirus was isolated from nasopharyngeal swab specimens from clinically normal laboratory guinea pigs, and was characterized and named caviid parainfluenza virus 3 (CavPIV-3). The CavPIV-3 is enveloped, is 100 to 300 nm in diameter, and has a characteristic 15-nm-diameter chevron-shaped virus ribonucleocapsid protein. Sequence analysis of the fusion glycoprotein of CavPIV-3 revealed it to be 94% identical to human and guinea pig parainfluenza 3 (PIV-3) viruses and 80% identical to bovine PIV-3. To determine whether CavPIV-3 causes clinical disease in laboratory guinea pigs and to compare the serologic response of guinea pigs to CavPIV-3 and to other paramyxoviruses, an infection study was performed, in which groups of guinea pigs were inoculated with CavPIV-3, Sendai virus, simian virus 5 (SV-5), murine pneumonia virus (PVM), or bovine PIV-3 virus. During the course of the study, guinea pigs were maintained in an infectious disease suite, housed in Micro-Isolator cages, and were only manipulated under a laminar flow hood. Clinical signs of disease were not observed in any of the paramyxovirus-inoculated guinea pigs during the eight-week course of the study, and histologic signs of disease were not evident at necropsy eight weeks after inoculation. Guinea pigs inoculated with CavPIV-3, Sendai virus, PVM, and bovine PIV-3 developed robust homologous or heterologous serologic responses. In contrast, guinea pigs inoculated with SV-5 developed modest or equivocal serologic responses, as assessed by use of an enzyme-linked immunosorbent assay. Further, use of the SV-5 enzyme-linked immunosorbent assay resulted in the highest degree of non-specific reactivity among all of the paramyxovirus assays. In summary, CavPIV-3 is a novel guinea pig Respirovirus that subclinically infects laboratory guinea pigs, resulting in a robust serologic response, but no observed clinical or histologic disease. The CavPIV-3 fusion glycoprotein gene sequence is available from GenBank as accession No. AF394241, and the CavPIV-3 virus is available from the American Type Culture Collection as accession No. DR-1547.  相似文献   
164.
Insulin is known to upregulate apolipoprotein A-I (apoA-I) promoter activity and to increase apoA1 gene expression in vivo. To determine if enhancement of insulin action with insulin sensitizers can also increase the apoA-I expression, we studied the in vivo effect of troglitazone, a potent insulin sensitizer, on the expression of rat hepatic and intestinal apoA-I mRNA using Northern blot analysis. The plasma, hepatic, and intestinal apoA-I content was also measured with immunoblot analysis using a specific anti-rat apoA-I antiserum. Troglitazone, given mixed with rat chow (0.2%) for 18 days, did not increase either plasma or tissue apoA-I mRNA or protein content. Intestinal apoA-I mRNA content relative to glyceraldehyde-3 phosphate dehydrogenase (G(3)PDH) mRNA was significantly lower compared with hepatic tissue content in both control and troglitazone-treated rats. The effect of troglitazone on the rat apoA-I promoter was examined using transient transfection analysis in HepG2 cells transfected with the apoA-I-chloramphenicol acetyl transferase (CAT) reporter plasmid (pAI.474.CAT). CAT activity (percentage acetylation of chloramphenicol as means +/- SEM) was not significantly different in ethanol (vehicle)-treated cells compared with cells treated with troglitazone (50.5% +/- 2.5% in control cells vs 57.7% +/- 8.2% and 53.5% +/- 4.2% in cells treated with 10 and 100 mM troglitazone, respectively). It is concluded that troglitazone doses known to achieve insulin sensitization did not enhance rat apoA-I promoter activity sufficiently to result in an increased apoA-I mRNA or protein expression in the intact rat. However, peroxisome proliferator activator receptor (PPAR) agonists that have significant PPAR alpha activity in addition to their PPAR gamma effects, may well be able to induce apoA-I expression.  相似文献   
165.
Apoptotic cell death is a fundamental and highly regulated biological process in which a cell is instructed to actively participate in its own demise. This process of cellular suicide is activated by developmental and environmental cues and normally plays an essential role in eliminating superfluous, damaged, and senescent cells of many tissue types. In recent years, a number of experimental studies have provided evidence of widespread neuronal and glial apoptosis following injury to the central nervous system (CNS). These studies indicate that injury-induced apoptosis can be detected from hours to days following injury and may contribute to neurological dysfunction. Given these findings, understanding the biochemical signaling events controlling apoptosis is a first step towards developing therapeutic agents that target this cell death process. This review will focus on molecular cell death pathways that are responsible for generating the apoptotic phenotype. It will also summarize what is currently known about the apoptotic signals that are activated in the injured CNS, and what potential strategies might be pursued to reduce this cell death process as a means to promote functional recovery.  相似文献   
166.
167.
Investigations carried out over the past 3 years have implicated a key role for sphingosine 1-phosphate (SPP) in angiogenesis and blood vessel maturation. SPP is capable of inducing almost every aspect of angiogenesis and vessel maturation in vitro, including endothelial cell chemotaxis, survival, proliferation, capillary morphogenesis and adherence antigen deployment, as well as stabilizing developing endothelial cell monolayers and recruitment of smooth muscle cells to maturing vessels. Acting in conjunction with protein angiogenic factors, SPP induces prolific vascular development in many established models of angiogenesis in vivo. Thus, SPP is a unique, potent and multifaceted angiogenic agent. While SPP induces angiogenic effects by ligating members of the endothelial differentiation gene (EDG) G-protein-coupled family of receptors, recent studies suggest that endogenously produced SPP may also account for the ability of tyrosine kinase receptors to induce cell migration. Thus, SPP provides a clear link between tyrosine kinase and G-protein-coupled receptor agonists involved in the angiogenic response. However, the mechanisms by which SPP exerts its effects on vascular cells remain unclear, conflicting and controversial. Precise definition of the signalling pathways by which SPP induces specific aspects of the angiogenic response promises to lead to new and effective therapeutic approaches to regulate angiogenesis at sites of tissue damage, neoplastic transformation and inflammation. This review will trace the discovery of SPP as a novel angiogenic factor as it outlines present information on the signalling pathways by which SPP induces its effects on cells of the developing vascular bed.  相似文献   
168.
This study compared dynamics of the germ cell population in two swine breeds that differ in prolifacy, White Composite (WC) and Meishan (MS), during fetal and neonatal life and in mature sows. Germ cell populations developed in a similar pattern in these two diverse breeds during fetal life. Maximal germ cell number was observed at 90 days postcoitum (dpc) in both WC and MS gilts, and substantial oogonial apoptosis was evident thereafter with approximately 30% of maximal numbers present at 25 days postpartum (dpp). Neither gilt nor sow germ cell number was correlated with maternal ovulation rate. Postnatal MS gilts had larger pools of primordial follicles and consistently greater proportions and numbers of primary and secondary follicles compared to postnatal WC gilts, indicative of enhanced follicular recruitment and primordial follicle activation. Occasional antral follicles were present in MS ovaries by 25 dpp and numerous surface follicles were observed at 56 dpp in MS but not WC ovaries, indicative of more rapid ovarian maturation and early onset of puberty. Total germ cell number is unlikely to influence or to predict subsequent ovulation rate. These observations highlight important developmental events during late fetal and early postnatal life that prepare the ovarian environment for early onset of puberty and subsequent ovulation in MS gilts.  相似文献   
169.
Annulus cells release ATP in response to vibratory loading in vitro   总被引:4,自引:0,他引:4  
Mechanical forces regulate the developmental path and phenotype of a variety of tissues and cultured cells. Vibratory loading as a mechanical stimulus occurs in connective tissues due to energy returned from ground reaction forces, as well as a mechanical input from use of motorized tools and vehicles. Structures in the spine may be particularly at risk when exposed to destructive vibratory stimuli. Cells from many tissues respond to mechanical stimuli, such as fluid flow, by increasing intracellular calcium concentration ([Ca(2+)](ic)) and releasing adenosine 5'-triphosphate (ATP), extracellularly, as a mediator to activate signaling pathways. Therefore, we examined whether ATP is released from rabbit (rAN) and human (hAN) intervertebral disc annulus cells in response to vibratory loading. ATP release from annulus cells by vibratory stimulation as well as in control cells was quantitated using a firefly luciferin-luciferase assay. Cultured hAN and rAN cells had a basal level of extracellular ATP ([ATP](ec)) in the range of 1-1.5 nM. Vibratory loading of hAN cells stimulated ATP release, reaching a net maximum [ATP] within 10 min of continuous vibration, and shortly thereafter, [ATP] declined and returned to below baseline level. [ATP] in the supernatant fluid of hAN cells was significantly reduced compared to the control level when the cells received vibration for longer than 15 min. In rAN cells, [ATP] was increased in response to vibratory loading, attaining a level significantly greater than that of the control after 30 min of continuous vibration. Results of the current study show that resting annulus cells secrete ATP and maintain a basal [ATP](ec). Annulus cells may use this nucleotide as a signaling messenger in an autocrine/paracrine fashion in response to vibratory loading. Rapid degradation of ATP to ADP may alternatively modulate cellular responses. It is hypothesized that exposure to repetitive, complex vibration regimens may activate signaling pathways that regulate matrix destruction in the disc. As in tendon cells, ATP may block subsequent responses to load and modulate the vibration response. Rabbit annulus cells were used as a readily obtainable source of cells in development of an animal model for testing effects of vibration on the disc. Human cells obtained from discarded surgical specimens were used to correlate responses of animal to human cells.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号