首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2341篇
  免费   217篇
  国内免费   2篇
  2023年   10篇
  2022年   19篇
  2021年   40篇
  2020年   25篇
  2019年   34篇
  2018年   36篇
  2017年   31篇
  2016年   47篇
  2015年   101篇
  2014年   103篇
  2013年   131篇
  2012年   170篇
  2011年   167篇
  2010年   111篇
  2009年   73篇
  2008年   137篇
  2007年   122篇
  2006年   116篇
  2005年   135篇
  2004年   134篇
  2003年   137篇
  2002年   126篇
  2001年   32篇
  2000年   28篇
  1999年   30篇
  1998年   17篇
  1997年   26篇
  1996年   22篇
  1995年   21篇
  1994年   14篇
  1993年   30篇
  1992年   20篇
  1991年   18篇
  1990年   13篇
  1989年   9篇
  1988年   13篇
  1987年   10篇
  1986年   14篇
  1985年   20篇
  1984年   18篇
  1983年   11篇
  1982年   27篇
  1981年   16篇
  1980年   17篇
  1979年   9篇
  1978年   13篇
  1976年   11篇
  1975年   11篇
  1974年   9篇
  1973年   12篇
排序方式: 共有2560条查询结果,搜索用时 140 毫秒
91.
92.
Streptococcus pyogenes (GAS) is a human pathogen that causes pharyngitis and invasive diseases such as toxic shock syndrome and sepsis. The upper respiratory tract is the primary reservoir from which GAS can infect new hosts and cause disease. The factors involved in colonisation are incompletely known however. Previous evidence in oral streptococci has shown that the AgI/II family proteins are involved. We hypothesized that the AspA member of this family might be involved in GAS colonization. We describe a novel mouse model of GAS colonization of the nasopharynx and lower respiratory tract to elucidate these interactions. We used two clinical M serotypes expressing AspA, and their aspA gene deletant isogenic mutants in experiments using adherence assays to respiratory epithelium, macrophage phagocytosis and neutrophil killing assays and in vivo models of respiratory tract colonisation and infection. We demonstrated the requirement for AspA in colonization of the respiratory tract. AspA mutants were cleared from the respiratory tract and were deficient in adherence to epithelial cells, and susceptible to phagocytosis. Expression of AspA in the surrogate host Lactococcus lactis protected bacteria from phagocytosis. Our results suggest that AspA has an essential role in respiratory infection, and may function as a novel anti-phagocytic factor.  相似文献   
93.
PICKLE plays a critical role in repression of genes that regulate development identity in Arabidopsis thaliana. PICKLE codes for a putative ATP-dependent chromatin remodeler that exhibits sequence similarity to members of subfamily II of animal CHD remodelers, which includes remodelers such as CHD3/Mi-2 that also restrict expression of developmental regulators. Whereas animal CHD3 remodelers are a component of the Mi-2/NuRD complex that promotes histone deacetylation, PICKLE promotes trimethylation of histone H3 lysine 27 suggesting that it acts via a distinct epigenetic pathway. Here, we examine whether PICKLE is also a member of a multisubunit complex and characterize the biochemical properties of recombinant PICKLE protein. Phylogenetic analysis indicates that PICKLE-related proteins in plants share a common ancestor with members of subfamily II of animal CHD remodelers. Biochemical characterization of PICKLE in planta, however, reveals that PICKLE primarily exists as a monomer. Recombinant PICKLE protein is an ATPase that is stimulated by ssDNA and mononucleosomes and binds to both naked DNA and mononucleosomes. Furthermore, recombinant PICKLE exhibits ATP-dependent chromatin remodeling activity. These studies demonstrate that subfamily II CHD proteins in plants, such as PICKLE, retain ATP-dependent chromatin remodeling activity but act through a mechanism that does not involve the ubiquitous Mi-2/NuRD complex.  相似文献   
94.

Introduction

3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a recreational club drug with supposed neurotoxic effects selectively on the serotonin system. MDMA users consistently exhibit memory dysfunction but there is an ongoing debate if these deficits are induced mainly by alterations in the prefrontal or mediotemporal cortex, especially the hippocampus. Thus, we investigated the relation of verbal memory deficits with alterations of regional cerebral brain glucose metabolism (rMRGlu) in recreational MDMA users.

Methods

Brain glucose metabolism in rest was assessed using 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18FDG PET) in 19 male recreational users of MDMA and 19 male drug-naïve controls. 18FDG PET data were correlated with memory performance assessed with a German version of the Rey Auditory Verbal Learning Test.

Results

As previously shown, MDMA users showed significant impairment in verbal declarative memory performance. PET scans revealed significantly decreased rMRGlu in the bilateral dorsolateral prefrontal and inferior parietal cortex, bilateral thalamus, right hippocampus, right precuneus, right cerebellum, and pons (at the level of raphe nuclei) of MDMA users. Among MDMA users, learning and recall were positively correlated with rMRGlu predominantly in bilateral frontal and parietal brain regions, while recognition was additionally related to rMRGlu in the right mediotemporal and bihemispheric lateral temporal cortex. Moreover, cumulative lifetime dose of MDMA was negatively correlated with rMRGlu in the left dorsolateral and bilateral orbital and medial PFC, left inferior parietal and right lateral temporal cortex.

Conclusions

Verbal learning and recall deficits of recreational MDMA users are correlated with glucose hypometabolism in prefrontal and parietal cortex, while word recognition was additionally correlated with mediotemporal hypometabolism. We conclude that memory deficits of MDMA users arise from combined fronto-parieto-mediotemporal dysfunction.  相似文献   
95.
We have reported that the P-gp substrate digoxin required basolateral and apical uptake transport in excess of that allowed by digoxin passive permeability (as measured in the presence of GF120918) to achieve the observed efflux kinetics across MDCK-MDR1-NKI (The Netherlands Cancer Institute) confluent cell monolayers. That is, GF120918 inhibitable uptake transport was kinetically required. Therefore, IC50 measurements using digoxin as a probe substrate in this cell line could be due to inhibition of P-gp, of digoxin uptake transport, or both. This kinetic analysis is now extended to include three additional cell lines: MDCK-MDR1-NIH (National Institute of Health), Caco-2 and CPT-B2 (Caco-2 cells with BCRP knockdown). These cells similarly exhibit GF120918 inhibitable uptake transport of digoxin. We demonstrate that inhibition of digoxin transport across these cell lines by GF120918, cyclosporine, ketoconazole and verapamil is greater than can be explained by inhibition of P-gp alone. We examined three hypotheses for this non-P-gp inhibition. The inhibitors can: (1) bind to a basolateral digoxin uptake transporter, thereby inhibiting digoxin''s cellular uptake; (2) partition into the basolateral membrane and directly reduce membrane permeability; (3) aggregate with digoxin in the donor chamber, thereby reducing the free concentration of digoxin, with concomitant reduction in digoxin uptake. Data and simulations show that hypothesis 1 was found to be uniformly acceptable. Hypothesis 2 was found to be uniformly unlikely. Hypothesis 3 was unlikely for GF120918 and cyclosporine, but further studies are needed to completely adjudicate whether hetero-dimerization contributes to the non-P-gp inhibition for ketoconazole and verapamil. We also find that P-gp substrates with relatively low passive permeability such as digoxin, loperamide and vinblastine kinetically require basolateral uptake transport over that allowed by +GF120918 passive permeability, while highly permeable P-gp substrates such as amprenavir, quinidine, ketoconazole and verapamil do not, regardless of whether they actually use the basolateral transporter.  相似文献   
96.

Purpose

Rod spherules are the site of the first synaptic contact in the retina’s rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease.

Methods

We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis.

Results

Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules lacking an axon (R2) were also described and characterized. This rod spherule group consists of a specific spatial organization that is strictly located at the apical OPL-facing layer of the Outer Nuclear Layer (ONL). The R2 spherule displays a large bowl-shaped synaptic terminal that hugs the rod soma. Retracted spherules in the DscamGoF retina were also reconstructed to test if they are structurally similar to R2 spherules. The misplaced rod spherules in DscamGoF have a gross morphology that is similar to R2 spherules but have significant disruption in internal synapse organization.

Conclusion

We described a morphological diversity within Mus musculus rod spherules. This diversity is correlated with rod location in the ONL and contributes to the intracellular differences within spherules. Analysis of the DscamGoF retina indicated that their R2 spherules are not significantly different than wild type R2 spherules, but that their retracted rod spherules have abnormal synaptic organization.  相似文献   
97.
Rust fungal pathogens of wheat (Triticum spp.) affect crop yields worldwide. The molecular mechanisms underlying the virulence of these pathogens remain elusive, due to the limited availability of suitable molecular genetic research tools. Notably, the inability to perform high-throughput analyses of candidate virulence proteins (also known as effectors) impairs progress. We previously established a pipeline for the fast-forward screens of rust fungal candidate effectors in the model plant Nicotiana benthamiana. This pipeline involves selecting candidate effectors in silico and performing cell biology and protein-protein interaction assays in planta to gain insight into the putative functions of candidate effectors. In this study, we used this pipeline to identify and characterize sixteen candidate effectors from the wheat yellow rust fungal pathogen Puccinia striiformis f sp tritici. Nine candidate effectors targeted a specific plant subcellular compartment or protein complex, providing valuable information on their putative functions in plant cells. One candidate effector, PST02549, accumulated in processing bodies (P-bodies), protein complexes involved in mRNA decapping, degradation, and storage. PST02549 also associates with the P-body-resident ENHANCER OF mRNA DECAPPING PROTEIN 4 (EDC4) from N. benthamiana and wheat. We propose that P-bodies are a novel plant cell compartment targeted by pathogen effectors.  相似文献   
98.

Introduction

Atherosclerosis is the underlying cause of cardiovascular disease that leads to more global mortalities each year than any other ailment. Consumption of active food ingredients such as phytosterols, omega-3 polyunsaturated fatty acids and flavanols are known to impart beneficial effects on cardiovascular disease although the combined actions of such agents in atherosclerosis is poorly understood. The aim of this study was to screen a nutritional supplement containing each of these active components for its anti-atherosclerotic effect on macrophages in vitro.

Results

The supplement attenuated the expression of intercellular adhesion molecule-1 and macrophage chemoattractant protein-1 in human and murine macrophages at physiologically relevant doses. The migratory capacity of human monocytes was also hindered, possibly mediated by eicosapentaenoic acid and catechin, while the ability of foam cells to efflux cholesterol was improved. The polarisation of murine macrophages towards a pro-inflammatory phenotype was also attenuated by the supplement.

Conclusion

The formulation was able to hinder multiple key steps of atherosclerosis development in vitro by inhibiting monocyte recruitment, foam cell formation and macrophage polarisation towards an inflammatory phenotype. This is the first time a combination these ingredients has been shown to elicit such effects and supports its further study in preclinical in vivo models.  相似文献   
99.
Streptavidin is a homotetrameric protein binding the vitamin biotin and peptide analogues with an extremely high affinity, which leads to a large variety of applications. The biotin‐auxotrophic yeast Pichia pastoris has recently been identified as a suitable host for the expression of the streptavidin gene, allowing both high product concentrations and productivities. However, so far only methanol‐based expression systems have been applied, bringing about increased oxygen demand, strong heat evolution and high requirements for process safety, causing increased cost. Moreover, common methanol‐based processes lead to large proportions of biotin‐blocked binding sites of streptavidin due to biotin‐supplemented media. Targeting these problems, this paper provides strategies for the methanol‐free production of highly bioactive core streptavidin by P. pastoris under control of the constitutive GAP promoter. Complex were superior to synthetic production media regarding the proportion of biotin‐blocked streptavidin. The optimized, easily scalable fed‐batch process led to a tetrameric product concentration of up to 4.16 ± 0.11 µM of biotin‐free streptavidin and a productivity of 57.8 nM h?1 based on constant glucose feeding and a successive shift of temperature and pH throughout the cultivation, surpassing the concentration in un‐optimized conditions by a factor of 3.4. Parameter estimation indicates that the optimized conditions caused a strongly increased accumulation of product at diminishing specific growth rates (μ ≈ D < 0.01 h?1), supporting the strategy of feeding. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:855–864, 2016  相似文献   
100.
Linear, branch-chained triterpenes, including squalene (C30), botryococcene (C30), and their methylated derivatives (C31–C37), generated by the green alga Botryococcus braunii race B have received significant attention because of their utility as chemical and biofuel feedstocks. However, the slow growth habit of B. braunii makes it impractical as a production system. In this study, we evaluated the potential of generating high levels of botryococcene in tobacco (Nicotiana tabacum) plants by diverting carbon flux from the cytosolic mevalonate pathway or the plastidic methylerythritol phosphate pathway by the targeted overexpression of an avian farnesyl diphosphate synthase along with two versions of botryococcene synthases. Up to 544 µg g−1 fresh weight of botryococcene was achieved when this metabolism was directed to the chloroplasts, which is approximately 90 times greater than that accumulating in plants engineered for cytosolic production. To test if methylated triterpenes could be produced in tobacco, we also engineered triterpene methyltransferases (TMTs) from B. braunii into wild-type plants and transgenic lines selected for high-level triterpene accumulation. Up to 91% of the total triterpene contents could be converted to methylated forms (C31 and C32) by cotargeting the TMTs and triterpene biosynthesis to the chloroplasts, whereas only 4% to 14% of total triterpenes were methylated when this metabolism was directed to the cytoplasm. When the TMTs were overexpressed in the cytoplasm of wild-type plants, up to 72% of the total squalene was methylated, and total triterpene (C30+C31+C32) content was elevated 7-fold. Altogether, these results point to innate mechanisms controlling metabolite fluxes, including a homeostatic role for squalene.Terpenes and terpenoids represent a distinct class of natural products (Buckingham, 2003) that are derived from two universal five-carbon precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In eukaryotic fungi and animals, IPP and DMAPP are synthesized via the mevalonate (MVA) pathway, whereas in prokaryotes, they are synthesized via the methylerythritol phosphate (MEP) pathway. In higher plants, the pathways are present in separate compartments and are believed to operate independently. The MVA pathway in the cytoplasm is predominantly responsible for sesquiterpene (C15), triterpene (C30), and polyprenol (greater than C45) biosynthesis and associated with the endoplasmic reticulum (ER) system. The MEP pathway resides in plastids and is dedicated to monoterpenes (C10), diterpenes (C20), carotenoids (C40), and long-chain phytol biosynthesis. All these compounds are usually produced by plants for a variety of physiological (i.e. hormones, aliphatic membrane anchors, and maintaining membrane structure) and ecological (i.e. defense compounds and insect/animal attractants) roles (Kempinski et al., 2015). Terpenes are also important for various industrial applications, ranging from flavors and fragrances (Schwab et al., 2008) to medicines (Dewick, 2009; Niehaus et al., 2011; Shelar, 2011).The utility of terpenes as chemical and biofuel feedstocks has also received considerable attention recently. Isoprenoid-derived biofuels include farnesane (Renninger and McPhee, 2008; Rude and Schirmer, 2009), bisabolene (Peralta-Yahya et al., 2011), pinene dimers (Harvey et al., 2010), isopentenal (Withers et al., 2007), and botryococcene (Moldowan and Seifert, 1980; Hillen et al., 1982; Glikson et al., 1989; Mastalerz and Hower, 1996). The richness of branches within these hydrocarbon scaffolds correlate with their high-energy content, which enables them to serve as suitable alternatives to crude petroleum (Peralta-Yahya and Keasling, 2010). Indeed, some of them are already major contributors to current-day petroleum-based fuels. One of the best examples of this is the triterpene oil accumulating in the green alga Botryococcus braunii race B, which is considered a major progenitor to oil and coal shale deposits (Moldowan and Seifert, 1980). This alga has been well studied, and the major constituents of its prodigious hydrocarbon oil are a group of triterpenes including squalene (C30), organism-specific botryococcene (C30), methylated squalene (C31–C34), and methylated botryococcene (C31–C37; Metzger et al., 1988; Huang and Poulter, 1989; Okada et al., 1995), which can be readily converted into all classes of combustible fuels under hydrocracking conditions (Hillen et al., 1982).The unique biosynthetic mechanism for the triterpenes in B. braunii was recently described by Niehaus et al. (2011), and a series of novel squalene synthase-like genes were identified (Fig. 1). In short, squalene synthase-like enzyme, SSL-1, performs a head-to-head condensation of two farnesyl diphosphate (FPP) molecules into presqualene diphosphate, followed by a reductive rearrangement to yield squalene (C30) by the enzyme SSL-2, or is converted by SSL-3 to form botryococcene through a different reductive rearrangement (Niehaus et al., 2011). Methylated derivatives are the dominant triterpene species generated by B. braunii race B (Metzger, 1985; Metzger et al., 1988), and these derivatives are known to yield higher quality fuels due to their high energy content and the hydrocracking products derived by virtue of having more hydrocarbon branches. Triterpene methyltransferases (TMTs) that can methylate squalene and botryococcene have been successfully characterized by Niehaus et al. (2012). TRITERPENE METHYLTRANSFERASE1 (TMT-1) and TMT-2 prefer squalene C30 as their substrate for the production of monomethylated (C31) or dimethylated (C32) squalene, while TMT-3 prefers botryococcene as its substrate for the biosynthesis of monomethylated (C31) or dimethylated (C32) botryococcene (Fig. 1). These TMTs are believed to be insoluble enzymes; they exhibit large hydrophobic areas, and their activities were only observed in vitro using yeast microsomal preparations (no activity was observed when expressed in bacteria; Niehaus et al., 2012).Open in a separate windowFigure 1.Depiction of the catalytic roles of novel SSL and TMT enzymes in B. braunii race B and their putative contributions to the triterpene constituents (Niehaus et al., 2011; Niehaus et al., 2012). SSL-1 catalyzes the condensation of two farnesyl diphosphate (FPP) molecules to presqualene diphosphate (PSPP), which is converted to either squalene or botryococcene by SSL-2 or SSL-3, respectively. Squalene can also be synthesized directly from the condensation of two FPP molecules catalyzed by squalene synthase (SQS). TMT-1 and TMT-2 transfer the methyl donor group from S-adenosylmethionine (SAM) to squalene to form monomethylated and dimethylated squalene, whereas TMT-3 acts on botryococcene to form monomethylated and dimethylated botryococcene (Niehaus et al., 2012).Like the majority of identified methyltransferases, these TMTs utilize the methyl donor S-adenosyl methionine (SAM), which is ubiquitous in prokaryotes and eukaryotes (Scheer et al., 2011; Liscombe et al., 2012). In plants, SAM is one of the most abundant cofactors (Fontecave et al., 2004; Sauter et al., 2013) and is synthesized exclusively in the cytosol (Wallsgrove et al., 1983; Ravanel et al., 1998, 2004; Bouvier et al., 2006). While it is used predominantly as a methyl donor in the methylation reaction (Ravanel et al., 2004), it also serves as the primary precursor for the biosynthesis of ethylene (Wang et al., 2002b), polyamines (Kusano et al., 2008), and nicotianamine (Takahashi et al., 2003), which play a variety of important roles for plant growth and development (Huang et al., 2012; Sauter et al., 2013). The SAM present in organelles, like the chloroplast, appears to be imported from the cytosol by specific SAM/S-adenosylhomocysteine exchange transporters that reside on the envelope membranes of plastids (Ravanel et al., 2004; Bouvier et al., 2006). The imported SAM is involved in the biogenesis of Asp-derived amino acids (Curien et al., 1998; Jander and Joshi, 2009; Sauter et al., 2013) and serves as the methyl donor for the methylation of macromolecules, such as plastid DNA (Nishiyama et al., 2002; Ahlert et al., 2009) and proteins (Houtz et al., 1989; Niemi et al., 1990; Ying et al., 1999; Trievel et al., 2003; Alban et al., 2014), and small molecule metabolites, such as prenylipids (e.g. plastoquinone, tocopherol, chlorophylls, and phylloquinone; Bouvier et al., 2005, 2006; DellaPenna, 2005).Although plants and microbes are the natural sources for useful terpenes, most of them are produced in very small amounts and often as complex mixtures. In contrast, B. braunii produces large quantities of triterpenes, but its slow growth makes it undesirable as a viable production platform (Niehaus et al., 2011). Nevertheless, metabolic engineering and synthetic biology offer many strategies to manipulate terpene metabolism in various biological systems to achieve high-value terpene production with high yield and high fidelity for particular practical applications (Nielsen and Keasling, 2011). Many successes have been achieved in engineering valuable terpenes in heterotrophic microbes, such as Escherichia coli (Nishiyama et al., 2002; Martin et al., 2003; Ajikumar et al., 2010) and Saccharomyces cerevisiae (Ro et al., 2006; Takahashi et al., 2007; Westfall et al., 2012; Zhuang and Chappell, 2015). The strategies developed in these efforts usually take advantage of specific microbe strains whose innate biosynthetic machinery is genetically modified to accumulate certain prenyldiphosphate precursors (e.g. IPP or FPP), which can be utilized by other introduced terpene synthase(s) for the production of the desired terpene(s). For example, greater than 900 mg L−1 bisabolene was produced when bisabolene synthase genes from plants were introduced into FPP-overproducing E. coli or S. cerevisiae strains (Peralta-Yahya et al., 2011). High levels of farnesane production for diesel fuels were also achieved by reductive hydrogenation of its precursor farnesene, which was generated from a genetically engineered yeast (e.g. Saccharomyces cerevisiae) strain using plant farnesene synthases (Renninger and McPhee, 2008; Ubersax and Platt, 2010). However, terpene production using microbial platforms is still dependent on exogenous feedstocks (i.e. sugars) and elaborate production facilities, both of which add significantly to their production costs.Compared with microbial systems, engineering terpene production in plant systems seems like an attractive target as well. This is because plants can take advantage of photosynthesis by using atmospheric CO2 as their carbon resource instead of relying on exogenous carbon feedstocks. Moreover, crop plants such as tobacco (Nicotiana tabacum) can generate a large amount of green tissues efficiently when grown for biomass production (Schillberg et al., 2003; Andrianov et al., 2010), making them a robust, sustainable, and scalable platform for large-scale terpene production. Nonetheless, compared with microbial platforms, there are only a few examples of elevating terpene production in bioengineered plants. This is due partly to higher plants being complex multicellular organisms, in which terpene metabolism generally utilizes more complex innate machinery that can be compartmentalized intracellularly and to cell/tissue specificities (Lange and Ahkami, 2013; Kempinski et al., 2015). Significant efforts have been made to overcome these obstacles to improve the production of valuable terpenes in plants, including monoterpenes (Lücker et al., 2004; Ohara et al., 2010; Lange et al., 2011), sesquiterpenes (Aharoni et al., 2003; Kappers et al., 2005; Wu et al., 2006; Davidovich-Rikanati et al., 2008), diterpenes (Besumbes et al., 2004; Anterola et al., 2009), and triterpenes (Inagaki et al., 2011; Wu et al., 2012). Among these, engineering terpene metabolism into a subcellular organelle, where the engineered enzymes/pathways can utilize unlimited/unregulated precursors as substrates, appears most successful. For example, Wu et al. (2006, 2012) expressed an avian farnesyl diphosphate synthase (FPS) with foreign sesquiterpene/triterpene synthases targeted to the plastid to divert the IPP/DMAPP pool from the plastidic MEP pathway to synthesize high levels of the novel sesquiterpenes patchoulol and amorpha-4,11-diene up to 30 µg g−1 fresh weight and the triterpene squalene up to 1,000 µg g−1 fresh weight. This strategy appears to be particularly robust because it avoids possible endogenous regulation of sesquiterpene and triterpene biosynthesis, which occurs normally in the cytoplasm, and relies upon more plastic precursor pools of IPP/DMAPP inherent in the plastid, which are primarily derived from the local CO2 fixation (Wright et al., 2014).The goal of this study was to evaluate the prospects for engineering advanced features of triterpene metabolism from B. braunii into tobacco and, thus, to probe the innate intricacies of isoprenoid metabolism in plants. In order to achieve this, we first introduced the key steps of botryococcene biosynthesis into specific subcellular compartments of tobacco cells under the direction of constitutive or trichome-specific promoters. The transgenic lines expressing the enzymes in the chloroplast were found to accumulate the highest levels of botryococcene. Triterpene methyltransferases were next introduced into the same intracellular compartments of selected high-triterpene-accumulating lines. A high yield of methylated triterpenes was also achieved in transgenic lines when the TMTs were targeted to the chloroplast. Through careful comparison of the levels of triterpenes and the methylated triterpene products in the various transgenic lines, we have also gained a deeper insight into the subcellular distribution of the triterpene products in these transgenic lines as well as a better understanding of methylation metabolism for specialized metabolites in particular compartments. These findings all contribute to our understanding of the regulatory elements that control carbon flux through the innate terpene biosynthetic pathways operating in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号