首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   966篇
  免费   149篇
  国内免费   1篇
  1116篇
  2023年   8篇
  2022年   5篇
  2021年   13篇
  2020年   8篇
  2019年   7篇
  2018年   15篇
  2017年   12篇
  2016年   26篇
  2015年   30篇
  2014年   39篇
  2013年   40篇
  2012年   60篇
  2011年   63篇
  2010年   37篇
  2009年   37篇
  2008年   40篇
  2007年   42篇
  2006年   60篇
  2005年   46篇
  2004年   51篇
  2003年   52篇
  2002年   43篇
  2001年   17篇
  2000年   18篇
  1999年   14篇
  1998年   16篇
  1997年   6篇
  1996年   8篇
  1994年   9篇
  1993年   5篇
  1992年   18篇
  1991年   16篇
  1990年   22篇
  1989年   21篇
  1988年   14篇
  1987年   17篇
  1986年   10篇
  1985年   12篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   9篇
  1980年   8篇
  1979年   8篇
  1978年   7篇
  1976年   6篇
  1974年   5篇
  1973年   8篇
  1968年   6篇
  1961年   6篇
排序方式: 共有1116条查询结果,搜索用时 15 毫秒
51.
52.
53.
54.
55.
Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain–CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3''s lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP–CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP–CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.CENTROMERES are essential for chromosome inheritance, because they nucleate kinetochores, the protein complexes on eukaryotic chromosomes that attach to spindle microtubules. Despite the essential requirement for centromeres in chromosome segregation, their DNA sequences and the sequences of kinetochore proteins are highly variable. Kinetochores in Saccharomyces cerevisiae and related budding yeasts assemble on small, unique centromere DNAs (125 bp in S. cerevisiae) (Meraldi et al. 2006). Centromere DNAs in the fission yeast Schizosaccharomyces pombe are larger, consisting of a central core sequence of 4–5 kb, which binds kinetochore proteins, flanked by large inverted repeats whose heterochromatic nature is important for centromere function (the total size of the S. pombe centromere DNA is 35–110 kb). At the other extreme from small yeast centromeres are holocentric organisms, such as Caenorhabditis elegans, in which kinetochore proteins bind along the entire length of mitotic chromosomes (Dernburg 2001). Most plants and animals have extremely large centromere DNA tracts consisting of megabases of simple tandem repeats. The repeat sequence evolves extremely rapidly, and only a small fraction of the repeat array is likely to be bound by kinetochore proteins. Furthermore, kinetochores can be nucleated by noncentromeric DNA sequences in plant and animal cells (Amor and Choo 2002; Nagaki et al. 2004; Nasuda et al. 2005; Heun et al. 2006; Wade et al. 2009). Despite these findings, the maintenance of massive centromere repeat arrays in both animal and plant taxa suggests that repeats are a central feature of centromere biology in these organisms.Although centromere DNAs are extremely diverse, all eukaryote kinetochores contain the centromere-specific histone H3 variant CENH3 (originally described as CENP-A in human) (Henikoff and Dalal 2005; Black and Bassett 2008). CENH3 replaces conventional H3 specifically in a subset of centromere nucleosomes. It is essential for kinetochore function in all eukaryotes where this requirement has been tested. Conventional histones are among the most conserved proteins in eukaryote genomes. In contrast, CENH3 is rapidly evolving. The C-terminal histone-fold domain, which complexes with other histones to form the globular nucleosome core, can be aligned with conventional H3''s but evolves rapidly and shows signatures of adaptive evolution in some residues (Malik and Henikoff 2001; Talbert et al. 2002; Cooper and Henikoff 2004). The N-terminal tail domain of conventional histone H3 protrudes from the nucleosome core and is not resolved in the structure solved by X-ray crystallography (Luger et al. 1997). In CENH3, the tail domain evolves so rapidly that its sequence can barely be aligned between closely related species.Experiments in yeast and in animals have delineated functionally important regions within CENH3. S. cerevisiae kinetochores contain only a single CENH3/Cse4p nucleosome (Furuyama and Biggins 2007). In S. cerevisiae Cse4p, amino acid residues required for normal function are distributed throughout the histone-fold domain (Keith et al. 1999). The N-terminal tail of Cse4p contains an essential region termed the END domain, but overexpression of a Cse4p lacking the tail altogether can rescue a cse4 deletion mutant (Chen et al. 2000; Morey et al. 2004). In Drosophila melanogaster cells, CENH3/Cid from the distantly related D. bipectinata did not localize to kinetochores unless a specific region of the histone-fold domain, loop 1, was swapped with the corresponding region from D. melanogaster CENH3/Cid (Vermaak et al. 2002). In human, the histone-fold domain is important for centromere targeting (Sullivan et al. 1994). The functionally important region within the histone-fold domain was further defined by inserting loop 1 and the α-2 helix from CENH3/CENP-A (termed the CENP-A targeting domain, or CATD) into conventional H3 (Black et al. 2004). H3 containing the CATD acquires several functions of CENP-A when expressed in human cells. It localizes to kinetochores, binds the kinetochore protein CENP-N, has a rigid secondary structure when assembled into nucleosomes, and can restore normal chromosome segregation in cells depleted for CENP-A using RNA interference (RNAi) (Black et al. 2004, 2007a,b; Carroll et al. 2009).Despite these extensive studies, questions about structure–function relationships within CENH3 remain. CENH3 function may differ between small yeast centromeres and the large tandem repeat centromeres of animals and plants, particularly because larger centromere DNAs are likely to contain many more CENH3 nucleosomes and may require a higher level of organization. Experiments in D. melanogaster and in human cells have used RNAi to downregulate the endogenous protein, and a conditional knockout has been made in chicken DT-40 cells (Blower and Karpen 2001; Goshima et al. 2003; Regnier et al. 2005; Black et al. 2007b). These experiments are challenging because CENH3 is very stable. If preexisting CENH3 is partitioned equally between duplicated sister centromeres, its amount will be approximately halved at each cell division. Therefore the protein may persist for many cell divisions after induction of RNAi, as shown by Western blots indicating that ∼10% of endogenous CENH3 remains in human cells subjected to two rounds of RNAi (Black et al. 2007b).We have chosen to study CENH3 in the model plant A. thaliana, which combines facile genetics and transgenesis with centromere DNA structure that is similar to most plants and animals (megabases of tandem repeats with a repeating unit of 178 bp) (Murata et al. 1994; Copenhaver et al. 1999). Although Drosophila and mouse CENH3 knockout mutants have been characterized (Howman et al. 2000; Blower et al. 2006), a large-scale structure–function analysis of CENH3 has not been attempted in these organisms. A cenh3 null mutant in A. thaliana allows us to completely replace the endogenous protein with transgenic variants (Ravi and Chan 2010). Here we report four major conclusions regarding CENH3 function in A. thaliana: (1) CENH3 function requires an N-terminal histone tail domain, although either the CENH3 tail or the H3 tail can support mitotic chromosome segregation. (2) Inserting the CENP-A targeting domain of CENH3 into H3 does not confer CENH3 function. (3) Complementation of cenh3 by heterologous CENH3 requires that the species of origin be closely related to A. thaliana. (4) Localization of a heterologous CENH3 protein to kinetochores in the presence of native CENH3 does not necessarily indicate that it can complement a cenh3 mutant. Overall, our results indicate that requirements for CENH3 function in A. thaliana are more stringent that those obtained in human cells. They underscore the usefulness of comparative studies of centromere function using genetically tractable experimental organisms.  相似文献   
56.
Femalerhesus macaques show monthly menstrual cycles and eventually enter menopause at approximately 25 yr of age. To help identify early biomarkers of menopause in this nonhuman primate, we monitored reproductive hormones longitudinally from aged female macaques during the transitions from premenopause to perimenopause and postmenopause and found that, indeed, elevated plasma FSH was a better predictive factor of menopause onset than age. In a second experiment, we compared reproductive hormone profiles of young adult macaques (8-10 yr old) with those of regularly cycling old macaques (approximately 24 yr old). Indwelling vascular catheters were used for remote blood collection for at least 100 consecutive days, thereby covering three complete menstrual cycles in each macaque. Plasma levels of estradiol, progesterone, LH, FSH, follicular phase inhibin B, and anti-müllerian hormone (AMH) were determined during each menstrual cycle and were averaged for each animal; group mean differences were analyzed using one-way ANOVA. Old premenopausal macaques showed regular menstrual cycles that were qualitatively indistinguishable from those of young macaques; peak plasma levels of estradiol, progesterone, and LH were not significantly different. In marked contrast, peak plasma FSH concentrations were significantly higher, while inhibin B and AMH levels were generally lower, in the old premenopausal macaques compared with those in the young macaques. These data provide further evidence that rhesus macaques serve as an excellent model to study underlying mechanisms of human menopause. Furthermore, the data suggest that an age-related change in FSH, inhibin B, and AMH secretion may be the first endocrine manifestation of the transition into perimenopause, potentially having value in predicting the onset of the perimenopausal transition.  相似文献   
57.
Developmental signaling cascades that can be perturbed by cocaine and other drugs of abuse have been difficult to study in humans and vertebrate models. Although numerous direct neural targets of cocaine have been elucidated at the molecular level, little is known about the specific cellular events that are impacted indirectly as a result of the drug's perturbation of neural circuits. We have developed oogenesis in Drosophila melanogaster as a model in which to identify downstream biochemical and/or cellular processes that are disrupted by chronic cocaine exposure. In this model, cocaine feeding resulted not only in expected reductions in viability, but also in unanticipated developmental defects during oogenesis, including aberrant follicle morphogenesis and vitellogenic follicle degeneration. To identify mechanisms through which cocaine exerted its deleterious effects on oogenesis, we examined candidate components of neural and hormonal signaling pathways. Cocaine-induced disruptions in follicle formation were enhanced by juvenile hormone exposure and phenocopied by serotonin feeding, while cocaine-activated follicle apoptosis was enhanced by concomitant dopamine feeding. HPLC analysis of dopamine and serotonin in the ovary suggests that these neurotransmitters could variably mediate cocaine's effects on oogenesis indirectly in the brain and/or directly in the ovary itself. We confirmed the involvement of hormone signaling by measuring ecdysteroids, which increase following cocaine exposure, and by demonstrating suppression of cocaine-induced follicle loss by hormone receptor mutants. Cocaine-induced ovarian follicle apoptosis and adult lethality appear to be caused by modulation of dopamine levels, while morphological defects during follicle formation likely result from perturbing serotonin signaling during cocaine exposure. Our work suggests not only a new role for juvenile hormone and/or serotonin in Drosophila ovarian follicle formation, but also a cocaine-sensitive role for dopamine in modulating hormone levels in the female fly.  相似文献   
58.
Several ZIP genes (SLC39A family of metal transporters) play roles in zinc homeostasis. Herein, the temporal and spatial patterns of expression of the mouse ZIP1, 3, 4, and 5 genes in the developing intestine and the effects of maternal dietary zinc deficiency on these patterns of expression were examined. ZIP1 and ZIP3 genes, conserved members of the ZIP subfamily II, were found to be coexpressed during development. Expression of these genes was detected on day 14 of gestation in smooth muscle and the pseudostratified endoderm. By 5 days post-partum, prominent expression became restricted to muscle and connective stroma. In contrast, expression of ZIP4 and ZIP5 genes, members of the ZIP subfamily called LIV-1, coincided with epithelial morphogenesis. ZIP5 expression was detected on d16 of gestation and localized to the basolateral membranes of the single-layered epithelium. ZIP4 expression was detected on d18 of gestation and localized to the apical membrane of villus epithelial cells. When dams were fed a zinc-deficient diet beginning at parturition, ZIP4 expression in the nursing neonate was greatly induced. In contrast, neonatal ZIP5 expression remained unchanged, but this protein was removed from the basolateral membrane of the enterocyte. These responses to dietary zinc deficiency mimic those found in the adult intestine. These studies reveal cell-type-specific expression of ZIP genes during development of the intestine, and suggest that the mouse intestine can elicit an adaptive response to dietary zinc availability at birth.  相似文献   
59.
The amount of adenosine triphosphate (ATP) stored in the muscle available for immediate use is limited, and once used, must be resynthesized in the muscle. Ribose, a naturally occurring pentose sugar, helps resynthesize ATP for use in muscles. There have been claims that ribose supplements increase ATP levels and improve performance. Other studies have provided mixed results on the effectiveness of ribose as an ergogenic aid at high doses. None of these studies have compared the impact of the recommended dose of ribose on athletes and nonathletes under exercise conditions that are most conducive for effectiveness. The purpose of this study was to evaluate the effectiveness of ribose as an ergogenic aid at the dose recommended for supplements currently on the market during an exercise trial to maximize its efficacy. Male subjects (n = 11) performed 2 trials 1 week apart. Each trial consisted of three 30-second Wingate tests with a 2-minute recovery between each test. Trials were counterbalanced, with 1 trial being performed with 625 mg of ribose and the other with a placebo. Peak power, mean power, and percent decrease in power were recorded during each Wingate test. Repeated-measures analysis of variance (p > 0.05) found no significant differences between ribose and placebo. These results suggest that ribose had no effect on performance when taken orally, at the dose suggested by the distributor.  相似文献   
60.
Many essential aspects of genome function, including gene expression and chromosome segregation, are mediated throughout development and differentiation by changes in the chromatin state. Along with genomic signals encoded in the DNA, epigenetic processes regulate heritable gene expression patterns. Genomic signals such as enhancers, silencers, and repetitive DNA, while required for the establishment of alternative chromatin states, have an unclear role in epigenetic processes that underlie the persistence of chromatin states throughout development. Here, we demonstrate in fission yeast that the maintenance and inheritance of ectopic heterochromatin domains are independent of the genomic sequences necessary for their de novo establishment. We find that both structural heterochromatin and gene silencing can be stably maintained over an ~10-kb domain for up to hundreds of cell divisions in the absence of genomic sequences required for heterochromatin establishment, demonstrating the long-term persistence and stability of this chromatin state. The de novo heterochromatin, despite the absence of nucleation sequences, is also stably inherited through meiosis. Together, these studies provide evidence for chromatin-dependent, epigenetic control of gene silencing that is heritable, stable, and self-sustaining, even in the absence of the originating genomic signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号