首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   27篇
  427篇
  2023年   4篇
  2022年   4篇
  2021年   5篇
  2018年   4篇
  2017年   5篇
  2016年   8篇
  2015年   10篇
  2014年   12篇
  2013年   17篇
  2012年   12篇
  2011年   25篇
  2010年   12篇
  2009年   19篇
  2008年   25篇
  2007年   25篇
  2006年   26篇
  2005年   25篇
  2004年   20篇
  2003年   19篇
  2002年   24篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   8篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   8篇
  1991年   11篇
  1990年   8篇
  1989年   7篇
  1988年   8篇
  1987年   3篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有427条查询结果,搜索用时 15 毫秒
381.

Introduction

Data are sparse about the potential health risks of chronic low-dose contamination of humans by uranium (natural or anthropogenic) in drinking water. Previous studies report some molecular imbalances but no clinical signs due to uranium intake.

Objectives

In a proof-of-principle study, we reported that metabolomics is an appropriate method for addressing this chronic low-dose exposure in a rat model (uranium dose: 40 mg L?1; duration: 9 months, n = 10). In the present study, our aim was to investigate the dose–effect pattern and identify additional potential biomarkers in urine samples.

Methods

Compared to our previous protocol, we doubled the number of rats per group (n = 20), added additional sampling time points (3 and 6 months) and included several lower doses of natural uranium (doses used: 40, 1.5, 0.15 and 0.015 mg L?1). LC–MS metabolomics was performed on urine samples and statistical analyses were made with SIMCA-P+ and R packages.

Results

The data confirmed our previous results and showed that discrimination was both dose and time related. Uranium exposure was revealed in rats contaminated for 9 months at a dose as low as 0.15 mg L?1. Eleven features, including the confidently identified N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide and 4-hydroxyphenylacetylglycine, discriminated control from contaminated rats with a specificity and a sensitivity ranging from 83 to 96 %, when combined into a composite score.

Conclusion

These findings show promise for the elucidation of underlying radiotoxicologic mechanisms and the design of a diagnostic test to assess exposure in urine, in a dose range experimentally estimated to be above a threshold between 0.015 and 0.15 mg L?1.
  相似文献   
382.
The general stress response of Bacillus subtilis can be activated by stimuli such as the addition of salt or ethanol and with blue light. In the latter response, YtvA activates σB through a cascade of Rsb proteins, organized in stressosomes. YtvA is composed of an N-terminal LOV (light, oxygen, and voltage) domain and a C-terminal STAS (sulfate transporter and anti-sigma factor) domain and shows light-modulated GTP binding in vitro. Here, we examine the mechanism of YtvA-mediated activation of σB in vivo with site-directed mutagenesis. Constitutive off and constitutive on mutations have been identified. Disruption of GTP binding in the STAS domain eliminates light activation of σB. In contrast, modification of sites relevant for phosphorylation of STAS domains does not affect the stress response significantly. The data obtained are integrated into a model for the structure of full-length YtvA, which presumably functions as a dimer.LOV2 domains (1), members of the superfamily of PAS domains (2, 3), are abundant in all domains of life and were first identified in plant phototropins (4). These photoreceptors regulate stomatal opening, phototropism, etc. and contain two N-terminal LOV domains that confer light regulation on the C-terminal Ser/Thr kinase domain (4). They also occur in bacteria, in which YtvA from Bacillus subtilis has been best characterized (for a review, see e.g. Ref. 5). Its N-terminal LOV domain binds FMN and shows the typical LOV photochemistry (6, 7): covalent adduct formation between a cysteine and the FMN chromophore. A linker helix, denoted Jα (7), connects the LOV domain to a STAS domain. The latter domain is present in many regulators of the general stress response of B. subtilis (8, 9). Stress via the addition of salt or ethanol (for a review, see Ref. 10) and blue light (11, 12) activates the general stress response via the environmental pathway, which integrates various signals via a large multiprotein complex, called the stressosome (13, 14). YtvA, which mediates light activation of σB (11, 12, 15), co-purifies with other STAS domain proteins in the stressosomes (16).When cells are stressed, STAS domains of several stressosome proteins (e.g. RsbS and RsbR) are phosphorylated by another intrinsic stressosome component, the serine/threonine kinase RsbT (9, 14, 17, 18). Next, RsbT is released from the complex to trigger RsbU, a protein phosphatase, thus (indirectly) activating σB (19). Phosphorylation of YtvA, however, has never been detected. Rather, it has been demonstrated in vitro that YtvA shows light-dependent GTP binding, presumably at its NTP-binding site in the STAS domain (20).Little is known about the mechanism of signal transmission in and by YtvA, except that in the C62A mutant, photochemistry in vitro (12) and light activation of σB in vivo (12, 15) are abolished. More detailed information is available for LOV domains of phototropins. A conserved glutamine, which is in hydrogen-bonding contact with the isoalloxazine ring of FMN, rotates its side chain by 180° upon covalent adduct formation (21). Replacement of this residue by leucine in the LOV2 domain of Phy3 from Adiantum results in a considerable reduction of the light-induced structural change (22). The corresponding mutation in phototropin 1 from Arabidopsis impairs autophosphorylation activity (23). The signal generated in the LOV2 domain is transmitted to the downstream kinase domain of phototropin 1 of Avena sativa through disruption of the interaction between its central β-sheet and the C-terminal linker region, the Jα-helix (24).Here, we study the mechanism of activation of YtvA in vivo, i.e. light-induced activation of the σB response, with site-directed mutagenesis. We focus on three regions of the protein, the flavin-binding pocket, the β-sheet of the LOV domain, and the GTP-binding site, and on potential phosphorylation sites of the STAS domain. We demonstrate that light-activated GTP binding is crucial for functional YtvA. A computational approach was used to model the structure of full-length YtvA. The model suggests that light modulates accessibility of the GTP-binding site of the STAS domain of YtvA.  相似文献   
383.
384.
Understanding SARS-CoV-2 evolution and host immunity is critical to control COVID-19 pandemics. At the core is an arms-race between SARS-CoV-2 antibody and angiotensin-converting enzyme 2 (ACE2) recognition, a function of the viral protein spike. Mutations in spike impacting antibody and/or ACE2 binding are appearing worldwide, imposing the need to monitor SARS-CoV2 evolution and dynamics in the population. Determining signatures in SARS-CoV-2 that render the virus resistant to neutralizing antibodies is critical. We engineered 25 spike-pseudotyped lentiviruses containing individual and combined mutations in the spike protein, including all defining mutations in the variants of concern, to identify the effect of single and synergic amino acid substitutions in promoting immune escape. We confirmed that E484K evades antibody neutralization elicited by infection or vaccination, a capacity augmented when complemented by K417N and N501Y mutations. In silico analysis provided an explanation for E484K immune evasion. E484 frequently engages in interactions with antibodies but not with ACE2. Importantly, we identified a novel amino acid of concern, S494, which shares a similar pattern. Using the already circulating mutation S494P, we found that it reduces antibody neutralization of convalescent and post-immunization sera, particularly when combined with E484K and with mutations able to increase binding to ACE2, such as N501Y. Our analysis of synergic mutations provides a signature for hotspots for immune evasion and for targets of therapies, vaccines and diagnostics.  相似文献   
385.
386.
387.
Leukotriene biosynthesis inhibitors have potential as therapeutic agents for asthma and inflammatory diseases. A novel series of substituted coumarin derivatives has been synthesized and the structure-activity relationship was evaluated with respect to their ability to inhibit the formation of leukotrienes via the human 5-lipoxygenase enzyme.  相似文献   
388.
We recently documented the expression of a novel human mRNA variant encoding a yet uncharacterized SERCA [SR (sarcoplasmic reticulum)/ER (endoplasmic reticulum) Ca2+-ATPase] protein, SERCA2c [Gélébart, Martin, Enouf and Papp (2003) Biochem. Biophys. Res. Commun. 303, 676-684]. In the present study, we have analysed the expression and functional characteristics of SERCA2c relative to SERCA2a and SERCA2b isoforms upon their stable heterologous expression in HEK-293 cells (human embryonic kidney 293 cells). All SERCA2 proteins induced an increased Ca2+ content in the ER of intact transfected cells. In microsomes prepared from transfected cells, SERCA2c showed a lower apparent affinity for cytosolic Ca2+ than SERCA2a and a catalytic turnover rate similar to SERCA2b. We further demonstrated the expression of the endogenous SERCA2c protein in protein lysates isolated from heart left ventricles using a newly generated SERCA2c-specific antibody. Relative to the known uniform distribution of SERCA2a and SERCA2b in cardiomyocytes of the left ventricle tissue, SERCA2c was only detected in a confined area of cardiomyocytes, in close proximity to the sarcolemma. This finding led us to explore the expression of the presently known cardiac Ca2+-ATPase isoforms in heart failure. Comparative expression of SERCAs and PMCAs (plasma-membrane Ca2+-ATPases) was performed in four nonfailing hearts and five failing hearts displaying mixed cardiomyopathy and idiopathic dilated cardiomyopathies. Relative to normal subjects, cardiomyopathic patients express more PMCAs than SERCA2 proteins. Interestingly, SERCA2c expression was significantly increased (166+/-26%) in one patient. Taken together, these results demonstrate the expression of the novel SERCA2c isoform in the heart and may point to a still unrecognized role of PMCAs in cardiomyopathies.  相似文献   
389.
Phenanthrene imidazoles 26 and 44 have been identified as novel potent, selective and orally active mPGES-1 inhibitors. These inhibitors are significantly more potent than the previously reported chlorophenanthrene imidazole 1 (MF63) with a human whole blood IC50 of 0.20 and 0.14 μM, respectively. It exhibited a significant analgesic effect in a guinea pig hyperalgesia model at oral doses as low as 14 mg/kg. Both active and selective mPGES-1 inhibitors (26 and 44) have a relatively distinct pharmacokinetic profile and are suitable for clinical development.  相似文献   
390.
The cross talk between different membrane receptors is the source of increasing research. We designed and synthesized a new hetero-bivalent ligand that has antagonist properties on both A1 adenosine and μ opiate receptors with a Ki of 0.8 ± 0.05 and 0.7 ± 0.03 μM, respectively. This hybrid molecule increases cAMP production in cells that over express the μ receptor as well as those over expressing the A1 adenosine receptor and reverses the antalgic effects of μ and A1 adenosine receptor agonists in animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号