首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37062篇
  免费   16126篇
  国内免费   4篇
  2023年   138篇
  2022年   271篇
  2021年   819篇
  2020年   2471篇
  2019年   4042篇
  2018年   4209篇
  2017年   4437篇
  2016年   4571篇
  2015年   4664篇
  2014年   4338篇
  2013年   4869篇
  2012年   2685篇
  2011年   2303篇
  2010年   3519篇
  2009年   2211篇
  2008年   1226篇
  2007年   784篇
  2006年   696篇
  2005年   711篇
  2004年   652篇
  2003年   602篇
  2002年   553篇
  2001年   464篇
  2000年   373篇
  1999年   296篇
  1998年   65篇
  1997年   70篇
  1996年   58篇
  1995年   46篇
  1994年   53篇
  1993年   49篇
  1992年   98篇
  1991年   66篇
  1990年   54篇
  1989年   62篇
  1988年   54篇
  1987年   66篇
  1986年   49篇
  1985年   50篇
  1984年   48篇
  1983年   25篇
  1982年   26篇
  1981年   24篇
  1980年   17篇
  1979年   36篇
  1978年   21篇
  1976年   21篇
  1975年   30篇
  1974年   21篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
991.
Three novel p‐hydroxybenzoic acid derivatives (HSOP, HSOX, HSCP) were synthesized from p‐hydroxybenzoic acid and sulfonamides (sulfamonomethoxine sodium, sulfamethoxazole and sulfachloropyridazine sodium) and characterized by elemental analysis, HNMR and MS. Interactions between derivatives and bovine serum albumin (BSA) were studied by fluorescence quenching spectra, UV–vis absorption spectra and time‐resolved fluorescence spectra. Based on fluorescence quenching calculation and Förster's non‐radioactive energy transfer theory, the values of the binding constants, basic thermodynamic parameters and binding distances were obtained. Experimental results indicated that the three derivatives had a strong ability to quench fluorescence from BSA and that the binding reactions of the derivatives with BSA were a static quenching process. Thermodynamic parameters showed that binding reactions were spontaneous and exothermic and hydrogen bond and van der Waals force were predominant intermolecular forces between the derivatives and BSA. Synchronous fluorescence spectra suggested that HSOX and HSCP had little effect on the microenvironment and conformation of BSA in the binding reactions but the microenvironments around tyrosine residues were disturbed and polarity around tyrosine residues increased in the presence of HSOP. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
992.
A validated simple and sensitive spectrofluorimetric method was developed for the determination of chlorpromazine hydrochloride, promethazine hydrochloride, trifluperazine hydrochloride, thioridazine hydrochloride, perazine maleate and oxomemazine. The method was based on condensation of malonic acid/acetic anhydride (MAA) under the catalytic effect of the tertiary amine moiety of the studied phenothiazines to provide a deep yellow to brown colour with green florescence. Relative fluorescence intensity of the products was measured at λexc 398 nm and λem 432 nm. Different variables affecting the reaction were studied and optimized. The method was successfully applied for the determination of the studied drugs in commercial dosage forms. The lower detection limits allowed the application of this method for the determination of the compounds in plasma as an example of a biological fluid. In addition, the method was considered specific for the determination of tertiary amines in the presence of primary and secondary amines; as a result, it was deemed suitable for the determination of the cited drugs in the presence of their degradation products resulting from N‐dealkylation or oxidation of the corresponding sulphoxides or sulphones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
993.
We demonstrate a novel rapid direct detection method for immunohistochemistry, using a bioluminescent probe. An anti‐CEA antibody‐fused far‐red bioluminescent protein can monitor the accumulation of this type of probe in tumour tissues. The bimodal spectrum (λmax = 460 and 675 nm) of this bioluminescent probe is extremely stable under different conditions of pH and ion concentration. The sensitivity of our bioluminescent labelling was at the same level of enzymatic labelling, e.g. peroxidase, as an indirect system. Our novel technique is simple and can shorten the pretreatment time of paraffin sections to around 30 min. The utility of our bioluminescent labelling covers all imaging in vitro, in vivo and ex vivo, suggesting that our antibody‐fused bioluminescent probe has the potential to detect tumour antigens with a high sensitivity in routine immune histological examinations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
994.
A simple, accurate, precise and validated spectrofluorimetric method is proposed for the determination of two cephalosporins, namely, cefadroxile (cefa) and cefuroxime sodium (cefu) in pharmaceutical formulations. The method is based on a reaction between cephalosporins with 1,2‐naphthoquinone‐4‐sulfonate in alkaline medium, to form fluorescent derivatives that are extracted with chloroform and subsequently measured at 610 and 605 nm after excitation at 470 and 460 nm for cefa and cefu respectively. The optimum experimental conditions have been studied. Beer's law is obeyed over the concentrations of 20–70 ng/mL and 15–40 ng/mL for cefa and cefu, respectively. The detection limits were 4.46 ng/mL and 3.02 ng/mL with a linear regression correlation coefficient of 0.9984 and 0.998, and recoveries ranging 97.50–109.96% and 95.73–98.89% for cefa and cefu, respectively. The effects of pH, temperature, reaction time, 1,2‐naphthoquinone‐4‐sulfonic concentration and extraction solvent on the determination of cefa and cefu, have been examined. The proposed method can be applied for the determination of cefa and cefu in pharmaceutical formulations in quality control laboratories. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
995.
Time‐resolved fluorometry of lanthanide chelates is one of the most useful non‐isotopic detection techniques and has been used in numerous applications in biomedical science. We developed a time‐resolved fluoroimmunoassay (TRFIA) to quantify α‐fetoprotein (AFP) and hepatitis B virus surface antigen (HBsAg) in human serum. Based on a two‐site sandwich protocol, monoclonal antibodies (McAbs) against AFP and HBsAg were co‐coated in 96 microtitration wells and tracer McAbs against HBsAg and AFP were labeled with europium (Eu) and samarium (Sm) chelates, respectively. After application of diluted serum samples, Eu3+‐ and Sm3+‐McAbs were added and fluorescence signals of Sm3+ and Eu3+ tracers were collected. Detection limits of AFP and HBsAg were 0.09 mIU/L and 0.01 µg/L, respectively. Measurement ranges of AFP‐TRFIA and HBsAg‐TRFIA were 1–1000 mIU/L and 0.2‐150 µg/L, respectively. Intra‐ and inter‐assay coefficients of variation of AFP‐TRFIA were 3.3‐4.1% and 5.7‐7.2% and for HBsAg‐TRFIA were 2.9‐3.9% and 4.9‐6.8%, respectively. Linear correlation of TRFIA and chemiluminescence immunoassay measurements resulted in a correlation coefficient of 0.9949 for AFP and 0.9940 for HBsAg. For the endurance test, Eu‐labeled McAbs were stable for at least one year at ?20°C and the results of the TRFIA with the same reagents were also reproducible after one year. The availability of a highly sensitive, reliable and convenient AFP/HBsAg TRFIA will allow the quantification of both AFP and HBsAg, thereby providing diagnostic value in various clinical conditions and could be applied for clinical use. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
996.
Unlike mammals, regenerative model organisms such as amphibians and fish are capable of spinal cord regeneration after injury. Certain key differences between regenerative and nonregenerative organisms have been suggested as involved in promoting this process, such as the capacity for neurogenesis and axonal regeneration, which appear to be facilitated by favorable astroglial, inflammatory and immune responses. These traits provide a regenerative‐permissive environment that the mammalian spinal cord appears to be lacking. Evidence for the regenerative nonpermissive environment in mammals is given by the fact that they possess neural stem/progenitor cells, which transplanted into permissive environments are able to give rise to new neurons, whereas in the nonpermissive spinal cord they are unable to do so. We discuss the traits that are favorable for regeneration, comparing what happens in mammals with each regenerative organism, aiming to describe and identify the key differences that allow regeneration. This comparison should lead us toward finding how to promote regeneration in organisms that are unable to do so. genesis 51:529–544. © 2013 Wiley Periodicals, Inc.  相似文献   
997.
Regulators of G‐protein Signaling (Rgs) proteins are the members of a multigene family of GTPase‐accelerating proteins (GAP) for the Galpha subunit of heterotrimeric G‐proteins. Rgs proteins play critical roles in the regulation of G protein couple receptor (GPCR) signaling in normal physiology and human diseases such as cancer, heart diseases, and inflammation. Rgs12 is the largest protein of the Rgs protein family. Some in vitro studies have demonstrated that Rgs12 plays a critical role in regulating cell differentiation and migration; however its function and mechanism in vivo is largely unknown. Here, we generated a floxed Rgs12 allele (Rgs12flox/flox) in which the exon 2, containing both PDZ and PTB_PID domains of Rgs12, was flanked with two loxp sites. By using the inducible Mx1‐cre and Poly I:C system to specifically delete Rgs12 at postnatal 10 days in interferon‐responsive cells including monocyte and macrophage cells, we found that Rgs12 mutant mice had growth retardation with the phenotype of increased bone mass. We further found that deletion of Rgs12 reduced osteoclast numbers and had no significant effect on osteoblast formation. Thus, Rgs12flox/flox conditional mice provide a valuable tool for in vivo analysis of Rgs12 function and mechanism through time‐ and cell‐specific deletion of Rgs12. genesis 51:201–209, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
998.
Porcine induced pluripotent stem cells (iPSCs) provide useful information for translational research. The quality of iPSCs can be assessed by their ability to differentiate into various cell types after chimera formation. However, analysis of chimera formation in pigs is a labor‐intensive and costly process, necessitating a simple evaluation method for porcine iPSCs. Our previous study identified mouse embryonic stem cell (ESC)‐specific hypomethylated loci (EShypo‐T‐DMRs), and, in this study, 36 genes selected from these were used to evaluate porcine iPSC lines. Based on the methylation profiles of the 36 genes, the iPSC line, Porco Rosso‐4, was found closest to mouse pluripotent stem cells among 5 porcine iPSCs. Moreover, Porco Rosso‐4 more efficiently contributed to the inner cell mass (ICM) of blastocysts than the iPSC line showing the lowest reprogramming of the 36 genes (Porco Rosso‐622‐14), indicating that the DNA methylation profile correlates with efficiency of ICM contribution. Furthermore, factors known to enhance iPSC quality (serum‐free medium with PD0325901 and CHIR99021) improved the methylation status at the 36 genes. Thus, the DNA methylation profile of these 36 genes is a viable index for evaluation of porcine iPSCs. genesis 51:763–776. © 2013 Wiley Periodicals, Inc.  相似文献   
999.
We have assessed the efficacy of the recently developed CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR‐associated) system for genome modification in the amphibian Xenopus tropicalis. As a model experiment, targeted mutations of the tyrosinase gene were verified, showing the expected albinism phenotype in injected embryos. We further tested this technology by interrupting the six3 gene, which is required for proper eye and brain formation. Expected eye and brain phenotypes were observed when inducing mutations in the six3 coding regions, as well as when deleting the gene promoter by dual targeting. We describe here a standardized protocol for genome editing using this system. This simple and fast method to edit the genome provides a powerful new reverse genetics tool for Xenopus researchers. genesis 51:835–843. © 2013 Wiley Periodicals, Inc.  相似文献   
1000.
In the past decade, mass-spectrometry-based methods have emerged for the quantitative profiling of dynamic changes in protein phosphorylation, allowing the behavior of thousands of phosphorylation sites to be monitored in a single experiment. However, when one is interested in specific signaling pathways, such shotgun methodologies are not ideal because they lack selectivity and are not cost and time efficient with respect to instrument and data analysis time.Here we evaluate and explore a peptide-centric antibody generated to selectively enrich peptides containing the cAMP-dependent protein kinase (PKA) consensus motif. This targeted phosphoproteomic strategy is used to profile temporal quantitative changes of potential PKA substrates in Jurkat T lymphocytes upon prostaglandin E2 (PGE2) stimulation, which increases intracellular cAMP, activating PKA. Our method combines ultra-high-specificity motif-based immunoaffinity purification with cost-efficient stable isotope dimethyl labeling. We identified 655 phosphopeptides, of which 642 (i.e. 98%) contained the consensus motif [R/K][R/K/X]X[pS/pT]. When our data were compared with a large-scale Jurkat T-lymphocyte phosphoproteomics dataset containing more than 10,500 phosphosites, a minimal overlap of 0.2% was observed. This stresses the need for such targeted analyses when the interest is in a particular kinase.Our data provide a resource of likely substrates of PKA, and potentially some substrates of closely related kinases. Network analysis revealed that about half of the observed substrates have been implicated in cAMP-induced signaling. Still, the other half of the here-identified substrates have been less well characterized, representing a valuable resource for future research.The identification and quantification of protein phosphorylation under system perturbations is an integral part of systems biology (1, 2). The combination of phosphopeptide enrichment (36), stable isotope labeling, and high-resolution mass spectrometry (MS) methods (79) has become the method of choice for the identification of novel phosphorylation sites and for the quantitation of temporal dynamics within signaling networks (10, 11), allowing the behavior of thousands of phosphorylation sites to be studied in a single experiment (10, 12, 13). Nowadays, one of the most commonly adopted high-throughput phosphoproteomics strategies utilizes two consecutive separation steps: (i) an initial fractionation to reduce the sample complexity, and (ii) a phosphopeptide-specific affinity purification. Such techniques include strong cation exchange fractionation under acidic conditions (3), followed by a chelation-based method with the use of metal ions (i.e. immobilized metal ion affinity chromatography (4), metal oxide affinity chromatography (10, 14), or Ti4+ immobilized metal ion affinity chromatography (6)). Alternatives to strong cation exchange for the first sample fractionation step have also been reported, including the use of electrostatic repulsion liquid chromatography (15, 16), which is well suited for the identification of multiply phosphorylated peptides, or hydrophilic interaction chromatography (17).Although the number of detected phosphorylated peptides is nowadays impressive, these kinds of methodologies are still inclined to identify/quantify the more abundant phosphoproteins present in a sample. For example, phosphotyrosine peptides are underrepresented because of their relatively lower abundance.In order to analyze key signaling events that may occur on less abundant phosphoproteins, more targeted approaches, focused on a specific pathway or a specific post-translational modification, are thus still essential. Studies examining post-translational modifications are often based on immunoaffinity purification at the protein or peptide level using dedicated antibodies. Recent examples include the selective enrichment of acetylated lysines (18) and phosphorylated tyrosines (19, 20). More recently, the first specific methods targeting serine/threonine phosphorylation motifs using immune-affinity assays have emerged (21, 22). The advantages of targeted approaches are their potentially higher sensitivity and more specific throughput with, as a consequence, relatively faster and easier data interpretation, which make them attractive for many systems biology applications.Immunoaffinity enrichment can be applied at both the protein and the peptide level, and both have been explored to study protein tyrosine phosphorylation (23). The first one results mainly in information on total protein phosphorylation levels. The detection of the actual phosphoresidue might be hampered by the high content of unmodified peptides derived from the immune-purified phosphoprotein and its binding partners. Immunoprecipitation at the peptide level (20, 24, 25), in contrast, leads to improved phosphosite characterization, with the identification of hundreds of sites, albeit with the loss (generally) of information regarding total protein expression.To profile the dynamic regulation of phosphorylation events via mass spectrometry, stable isotope labeling is often implemented, either with the use of amino acids in cell culture (10) or via chemical peptide labeling of the proteolytic digests (26, 27). To identify low-abundant signaling events, phosphoprotein/phosphopeptide immunoprecipitation is typically performed on several milligrams of material because of the substoichiometric abundance of post-translational modifications. This may hamper the use of expensive isotope-labeling reagents such as iTRAQ or tandem mass tag reagents, given the large amount of chemicals needed. Boersema et al. (28) introduced an alternative sensitive and accurate triplex labeling approach using inexpensive reagents (i.e. formaldehyde) that is much less limited in terms of the sample type or amount. We combined this latter stable-isotope dimethyl labeling approach (2729) with highly specific antibodies raised against a set of cAMP-dependent protein kinase (PKA) phosphorylated substrates as based on the current literature (11, 3034). It is generally accepted that PKA phosphorylates sites with the reasonably stringent consensus motif [R/K][R/K/X]X[pS/pT]. It should be noted that this consensus motif resembles somewhat the motifs of other AGC kinases (e.g. Akt, PKG, PKC).The basicity of the PKA motifs may hamper their analysis via MS-based proteomics, especially when trypsin is used as a protease, as the peptides may become too small to be sequenced. The use of trypsin is also unfavorable in the approach presented here when attempting to immunoprecipitate peptides bearing the PKA motif. Therefore, we decided to use Lys-C in order to keep the (dominant (RRX[pS/pT])) phosphorylated motif intact. To enhance identification, we applied decision-tree MS/MS technology (9), which makes use of HCD and ETD for more efficient fragmentation, higher mass accuracy in tandem MS mode, and less background noise (35).We applied this method to screen the response of Jurkat T cells to prostaglandin E2 (PGE2) treatment. PGE2 is a potent inflammatory mediator that plays an important role in several immune-regulatory actions (36). It is produced by many different cell types, including tumor cells, where carcinogenesis is associated with chronic inflammatory responses (37). PGE2 signaling in T cells is initiated by its binding to the G protein–coupled receptors EP1, -2, -3, and -4. Signaling pathways that are initiated by PGE2 are for the most part under control of the second messenger cyclic adenosine monophosphate (cAMP),1 which is generated from ATP by adenylyl cyclase when PGE2 binds to EP2 or EP4 receptors. One of the primary targets of cAMP is PKA—cAMP binding releases the catalytic subunit activating the kinase. In the current study, we efficiently enriched close to 650 phosphopeptides containing the [R/K][R/K/X]X[pS/pT] consensus motif. Almost all these sites were absent in a recently reported comprehensive phosphoproteomics dataset of Jurkat T cells (12), compiled using shotgun strong cation exchange–immobilized metal ion affinity chromatography analysis and containing ∼10,500 phosphorylation sites, illustrative of the complementarity and selectivity of our approach. The qualitative and quantitative data presented here provide a wide-ranging and credible resource of likely PKA substrates. Network analysis confirmed several established cAMP-dependent signaling nodes in our dataset, although most identified potential PKA substrates are “novel” (i.e. not previously reported and/or linked to PKA). Therefore, the dataset presented here can be considered as a comprehensive and reliable resource for future research into cAMP-related signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号