首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   839篇
  免费   67篇
  906篇
  2023年   12篇
  2022年   12篇
  2021年   17篇
  2020年   19篇
  2019年   10篇
  2018年   17篇
  2017年   9篇
  2016年   27篇
  2015年   39篇
  2014年   51篇
  2013年   54篇
  2012年   59篇
  2011年   69篇
  2010年   34篇
  2009年   34篇
  2008年   56篇
  2007年   42篇
  2006年   33篇
  2005年   51篇
  2004年   41篇
  2003年   36篇
  2002年   41篇
  2001年   9篇
  2000年   8篇
  1999年   8篇
  1998年   10篇
  1997年   5篇
  1996年   7篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1990年   5篇
  1989年   3篇
  1987年   3篇
  1985年   5篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1972年   3篇
  1970年   4篇
  1969年   3篇
  1968年   3篇
  1967年   3篇
  1960年   2篇
排序方式: 共有906条查询结果,搜索用时 15 毫秒
11.
12.
Tubular aggregates are regular arrays of membrane tubules accumulating in muscle with age. They are found as secondary features in several muscle disorders, including alcohol- and drug-induced myopathies, exercise-induced cramps, and inherited myasthenia, but also exist as a pure genetic form characterized by slowly progressive muscle weakness. We identified dominant STIM1 mutations as a genetic cause of tubular-aggregate myopathy (TAM). Stromal interaction molecule 1 (STIM1) is the main Ca2+ sensor in the endoplasmic reticulum, and all mutations were found in the highly conserved intraluminal Ca2+-binding EF hands. Ca2+ stores are refilled through a process called store-operated Ca2+ entry (SOCE). Upon Ca2+-store depletion, wild-type STIM1 oligomerizes and thereby triggers extracellular Ca2+ entry. In contrast, the missense mutations found in our four TAM-affected families induced constitutive STIM1 clustering, indicating that Ca2+ sensing was impaired. By monitoring the calcium response of TAM myoblasts to SOCE, we found a significantly higher basal Ca2+ level in TAM cells and a dysregulation of intracellular Ca2+ homeostasis. Because recessive STIM1 loss-of-function mutations were associated with immunodeficiency, we conclude that the tissue-specific impact of STIM1 loss or constitutive activation is different and that a tight regulation of STIM1-dependent SOCE is fundamental for normal skeletal-muscle structure and function.  相似文献   
13.
Research on the involvement of C1D and its yeast homologues Rrp47 (S. cerevisiae) and Cti1 (S. pombe) in DNA damage repair and RNA processing has remained mutually exclusive, with most studies predominantly concentrating on Rrp47. This review will look to reconcile the functions of these proteins in their involvement with the RNA exosome, in the regulation of chromatin architecture, and in the repair of DNA double-strand breaks, focusing on non-homologous end joining and homologous recombination. We propose that C1D is situated in a central position to maintain genomic stability at highly transcribed gene loci by coordinating these processes through the timely recruitment of relevant regulatory factors. In the event that the damage is beyond repair, C1D induces apoptosis in a p53-dependent manner.  相似文献   
14.
Identifying the factors that affect a plant’s probability of being found and damaged by herbivores has been a central topic in the study of herbivory. Although herbivory could have important negative consequences on carnivorous plants, their interaction with herbivores remains largely unexplored. We evaluated the effect of spatial variation in light environment (sunny, shade and full-shade sites) on the pattern of leaf herbivory and florivory of the carnivorous plant Pinguicula moranensis. Plants’ overall probability of leaf damage was high (74.24%). Mean herbivory was four times higher in the sunny and shade sites than the observed in the full-shade site. Nearly 8% of plants suffered damage to reproductive structures, although the probability of florivory was similar among sites. Discussion addressed the inter-site variation in mean herbivory considering the effect of light exposure and the impact that herbivory could have on fitness components of this carnivorous plant.  相似文献   
15.
16.
17.
18.
19.
20.
The flat, hooked-shaped architecture of the hamster sperm nucleus makes this an excellent model for in situ hybridization studies of the three dimensional structure of the genome. We have examined the structure of the telomere repeat sequence (TTAGGG)n with respect to the various nuclear structures present in hamster spermatozoa, using fluorescent in situ hybridization. In fully condensed, mature sperm nuclei, the telomere sequences appeared as discrete spots of various sizes interspersed throughout the volume of the nuclei. While the pattern of these signals was non-random, it varied significantly in different nuclei. These discrete telomere foci were seen to gradually lengthen into linear, beaded signals as sperm nuclei were decondensed, in vitro, and were not associated with the nuclear annulus. We also examined the relationship of telomeres to the sperm nuclear matrix, a residual nuclear structure that retains the original size and shape of the nucleus. In these structures the DNA extends beyond the perimeter of the nucleus to form a halo around it, representing the arrangement of the chromosomal DNA into loop domains attached at their bases to the nuclear matrix. Telomere signals in these structures were also linear and equal in length to those of the decondensed nuclei, and each signal represented part of a single DNA loop domain. The telomeres were attached at one end to the nuclear matrix and extended into the halo. Sperm nuclear matrices treated with Eco RI retained the telomere signals. These data support sperm DNA packaging models in which DNA is coiled into discrete foci, rather than spread out linearly along the length of the sperm nucleus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号