首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1052篇
  免费   85篇
  1137篇
  2023年   11篇
  2022年   17篇
  2021年   24篇
  2020年   22篇
  2019年   13篇
  2018年   19篇
  2017年   13篇
  2016年   30篇
  2015年   42篇
  2014年   56篇
  2013年   62篇
  2012年   75篇
  2011年   86篇
  2010年   46篇
  2009年   45篇
  2008年   72篇
  2007年   60篇
  2006年   44篇
  2005年   57篇
  2004年   47篇
  2003年   41篇
  2002年   49篇
  2001年   25篇
  2000年   16篇
  1999年   17篇
  1998年   14篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   7篇
  1991年   2篇
  1990年   9篇
  1989年   2篇
  1988年   5篇
  1987年   5篇
  1985年   9篇
  1983年   3篇
  1982年   2篇
  1980年   5篇
  1979年   5篇
  1978年   3篇
  1977年   4篇
  1975年   5篇
  1974年   2篇
  1970年   2篇
  1969年   2篇
  1967年   2篇
  1960年   2篇
排序方式: 共有1137条查询结果,搜索用时 15 毫秒
61.
Simian virus 40 (SV40) is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP) gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T) mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA repair. Our data show that inactivating mutations in CK1δ impair SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.  相似文献   
62.
63.
64.
65.
Summary Increasing evidence confirms that the extracellular matrix greatly influences cell behaviour and function. Collagen and fibrin are in contact with trophoblast throughout pregnancy. To investigate whether these two matrices influence hormon production by the trophoblast, explants from first-trimester chorionic villi were cultured for up to 30 days either a) in medium with agitation, b) embedded in type-I collagen (three-dimensional gels), or c) embedded in fibrin (three-dimensional gels). The supernatant culture medium was changed every 48 h and tested by radioimmunoassay for hCG, progesterone and pregnancy-associated plasma protein A. In addition, after 3, 7, 15, and 30 days of culture villi were fixed and studied by light and electron microscopy. Embedding in the extracellular matrix showed higher and longer-lasting production rates of all measured products and superior structural preservation as compared to cultures with agitation. Collagen matrix proved to be superior to fibrin. As established by several tests, this difference was neither due to thrombin used to polymerize fibrinogen, nor to differences in the diffusion rates through the two different matrices used. We conclude that extracellular matrix, particularly collagen, influences the synthesis of trophoblastic products. Embedding of the villous explants in three-dimensional gels constitutes a new method for long-term cultures of chorionic villi.This study was presented at the workshop Placental-and decidual-specific protein synthesis and secretion: regulation, role and interaction, Zemun, Belgrade, Yugoslavia, 19–20 May, 1988 (Bischof and Castellucci 1988; see also J. Aplin 1989), and at the 11th Rochester Trophoblast Conference, Rochester, N.Y. USA, 9–12 October 1988 (Castellucci et al. 1988)  相似文献   
66.
Many reproductive traits that have evolved under sexual conflict may be influenced by both sexes. Investigation of the genetic architecture of such traits can yield important insight into their evolution, but this entails that the heritable component of variation is estimated for males and females—as an interacting phenotype. We address the lack of research in this area through an investigation of egg production and copula duration in the fruit fly, Drosophila melanogaster. Despite egg production rate being determined by both sexes, which may cause sexual conflict, an assessment of this trait as an interacting phenotype is lacking. It is currently unclear whether copula duration is determined by males and/or females. We found significant female, but not male, genetic variance for egg production rate that may indicate reduced potential for ongoing sexually antagonistic coevolution. In contrast, copula duration was determined by significant genetic variance in both sexes. We also identified genetic variation in egg retention among virgin females. Although previously identified in wild populations, it is unclear why this should be present in a laboratory stock. This study provides a novel insight into the shared genetic architecture of reproductive traits that are the subject of sexual conflict.  相似文献   
67.
MCL-1 inhibits BAX in the absence of MCL-1/BAX Interaction   总被引:1,自引:0,他引:1  
The BCL-2 family of proteins plays a major role in the control of apoptosis as the primary regulator of mitochondrial permeability. The pro-apoptotic BCL-2 homologues BAX and BAK are activated following the induction of apoptosis and induce cytochrome c release from mitochondria. A second class of BCL-2 homologues, the BH3-only proteins, is required for the activation of BAX and BAK. The activity of both BAX/BAK and BH3-only proteins is opposed by anti-apoptotic BCL-2 homologues such as BCL-2 and MCL-1. Here we show that anti-apoptotic MCL-1 inhibits the function of BAX downstream of its initial activation and translocation to mitochondria. Although MCL-1 interacted with BAK and inhibited its activation, the activity of MCL-1 against BAX was independent of an interaction between the two proteins. However, the anti-apoptotic function of MCL-1 required the presence of BAX. These results suggest that the pro-survival activity of MCL-1 proceeds via inhibition of BAX function at mitochondria, downstream of its activation and translocation to this organelle.  相似文献   
68.
A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-dihydroxyhexadecanoyl)glycerol. CD1 has in vitro polyester synthesis activity and is required for cutin accumulation in vivo, indicating that it is a cutin synthase.  相似文献   
69.
BackgroundProgrammatic planning in HIV requires estimates of the distribution of new HIV infections according to identifiable characteristics of individuals. In sub-Saharan Africa, robust routine data sources and historical epidemiological observations are available to inform and validate such estimates.ConclusionsIt is possible to reliably predict the distribution of new HIV infections acquired using data routinely available in many countries in the sub-Saharan African region with a single relatively simple mathematical model. This tool would complement more specific analyses to guide resource allocation, data collection, and programme planning.  相似文献   
70.
Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6−10 cells, traversing a network of large germ line–derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号