首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2683篇
  免费   309篇
  2021年   27篇
  2020年   23篇
  2019年   18篇
  2018年   27篇
  2017年   27篇
  2016年   45篇
  2015年   69篇
  2014年   92篇
  2013年   119篇
  2012年   139篇
  2011年   158篇
  2010年   75篇
  2009年   73篇
  2008年   141篇
  2007年   132篇
  2006年   113篇
  2005年   103篇
  2004年   115篇
  2003年   110篇
  2002年   106篇
  2001年   90篇
  2000年   68篇
  1999年   56篇
  1998年   40篇
  1997年   32篇
  1996年   33篇
  1995年   36篇
  1994年   34篇
  1993年   35篇
  1992年   38篇
  1991年   57篇
  1990年   57篇
  1989年   40篇
  1988年   41篇
  1987年   34篇
  1986年   29篇
  1985年   41篇
  1984年   36篇
  1983年   33篇
  1982年   25篇
  1981年   26篇
  1980年   20篇
  1979年   34篇
  1978年   29篇
  1977年   20篇
  1976年   18篇
  1975年   27篇
  1974年   25篇
  1973年   19篇
  1972年   25篇
排序方式: 共有2992条查询结果,搜索用时 15 毫秒
991.
992.
We have identified YkbA from Bacillus subtilis as a novel member of the L-amino acid transporter (LAT) family of amino acid transporters. The protein is approximately 30% identical in amino acid sequence to the light subunits of human heteromeric amino acid transporters. Purified His-tagged YkbA from Escherichia coli membranes reconstituted in proteoliposomes exhibited sodium-independent, obligatory exchange activity for L-serine and L-threonine and also for aromatic amino acids, albeit with less activity. Thus, we propose that YkbA be renamed SteT (Ser/Thr exchanger transporter). Kinetic analysis supports a sequential mechanism of exchange for SteT. Freeze-fracture analysis of purified, functionally active SteT in proteoliposomes, together with blue native polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized purified SteT, suggest that the transporter exists in a monomeric form. Freeze-fracture analysis showed spherical particles with a diameter of 7.4 nm. Transmission electron microscopy revealed elliptical particles (diameters 6 x 7 nm) with a distinct central depression. To our knowledge, this is the first functional characterization of a prokaryotic member of the LAT family and the first structural data on an APC (amino acids, polyamines, and choline for organocations) transporter. SteT represents an excellent model to study the molecular architecture of the light subunits of heteromeric amino acid transporters and other APC transporters.  相似文献   
993.
Equilibrative nucleoside transporters (ENTs) are important for the metabolic salvage of nucleosides and the cellular uptake of antineoplastic and antiviral nucleoside analogs. Human equilibrative nucleoside transporter 1 (hENT1) is inhibited by nanomolar concentrations of structurally diverse compounds, including dipyridamole, dilazep, nitrobenzylmercaptopurine ribonucleoside (NBMPR), draflazine, and soluflazine. Random mutagenesis and screening by functional complementation for inhibitor-resistant mutants in yeast revealed mutations at Phe-334 and Asn-338. Both residues are predicted to lie in transmembrane segment 8 (TM 8), which contains residues that are highly conserved in the ENT family. F334Y displayed increased V(max) values that were attributed to increased rates of catalytic turnover, and N338Q and N338C displayed altered membrane distributions that appeared to be because of protein folding defects. Mutations of Phe-334 or Asn-338 impaired interactions with dilazep and dipyridamole, whereas mutations of Asn-338 impaired interactions with draflazine and soluflazine. A helical wheel projection of TM 8 predicted that Phe-334 and Asn-338 lie in close proximity to other highly conserved and/or hydrophilic residues, suggesting that they form part of a structurally important region that influences interactions with inhibitors, protein folding, and rates of conformational change during the transport cycle.  相似文献   
994.
Phosphorylation of human CTP synthetase 1 by mammalian protein kinase C was examined. Using purified Escherichia coli-expressed CTP synthetase 1 as a substrate, protein kinase C activity was time- and dose-dependent and dependent on the concentrations of ATP and CTP synthetase 1. The protein kinase C phosphorylation of the recombinant enzyme was accompanied by a 95-fold increase in CTP synthetase 1 activity. Phosphopeptide mapping and phosphoamino acid analyses showed that CTP synthetase 1 was phosphorylated on multiple serine and threonine residues. The induction of PKC1(R398A)-encoded protein kinase C resulted in a 50% increase for human CTP synthetase 1 phosphorylation in the Saccharomyces cerevisiae ura7Delta ura8Delta mutant lacking yeast CTP synthetase activity. Synthetic peptides that contain the protein kinase C motif for Ser(462) and Thr(455) were substrates for mammalian protein kinase C, and S462A and T455A mutations resulted in decreases in the extent of CTP synthetase 1 phosphorylation that occurred in vivo. Phosphopeptide mapping analysis of S. cerevisiae-expressed CTP synthetase 1 mutant enzymes phosphorylated with mammalian protein kinase C confirmed that Ser(462) and Thr(455) were phosphorylation sites. The S. cerevisiae-expressed and purified S462A mutant enzyme exhibited a 2-fold reduction in CTP synthetase 1 activity, whereas the purified T455A mutant enzyme exhibited a 2-fold elevation in CTP synthetase 1 activity (Choi, M.-G., and Carman, G.M. (2006) J. Biol. Chem. 282, 5367-5377). These data indicated that protein kinase C phosphorylation at Ser(462) stimulates human CTP synthetase 1 activity, whereas phosphorylation at Thr(455) inhibits activity.  相似文献   
995.
996.
Heparan sulfate (HS) is a cell surface carbohydrate polymer modified with sulfate moieties whose highly ordered composition is central to directing specific cell signaling events. The ability of the cell to generate these information rich glycans with such specificity has opened up a new field of "heparanomics" which seeks to understand the systems involved in generating these cell type and developmental stage specific HS sulfation patterns. Unlike other instances where biological information is encrypted as linear sequences in molecules such as DNA, HS sulfation patterns are generated through a non-template driven process. Thus, deciphering the sulfation code and the dynamic nature of its generation has posed a new challenge to system biologists. The recent discovery of two sulfatases, Sulf1 and Sulf2, with the unique ability to edit sulfation patterns at the cell surface, has opened up a new dimension as to how we understand the regulation of HS sulfation patterning and pattern-dependent cell signaling events. This review will focus on the functional relationship between HS sulfation patterning and biological processes. Special attention will be given to Sulf1 and Sulf2 and how these key editing enzymes might act in concert with the HS biosynthetic enzymes to generate and regulate specific HS sulfation patterns in vivo. We will further explore the use of knock out mice as biological models for understanding the dynamic systems involved in generating HS sulfation patterns and their biological relevance. A brief overview of new technologies and innovations summarizes advances in the systems biology field for understanding non-template molecular networks and their influence on the "heparanome".  相似文献   
997.
Uracil DNA glycosylase (UNG) is the primary enzyme for the removal of uracil from the genome of many organisms. A key question is how the enzyme is able to scan large quantities of DNA in search of aberrant uracil residues. Central to this is the mechanism by which it flips the target nucleotide out of the DNA helix and into the enzyme-active site. Both active and passive mechanisms have been proposed. Here, we report a rapid kinetic analysis using two fluorescent chromophores to temporally resolve DNA binding and base-flipping with DNA substrates of different sequences. This study demonstrates the importance of the protein–DNA interface in the search process and indicates an active mechanism by which UNG glycosylase searches for uracil residues.  相似文献   
998.
999.
The use of antibodies as direct probes for specific macromolecules in plant cells and tissue is a well-established and extremely powerful technique and is of particular use in the post-genomics era. In this paper, we present an improved fixation, embedding, and immunofluorescence technique suitable for fixing “difficult” plant tissues such as pistils and inflorescence stems, which possess many trichomes and a thick hydrophobic cuticle. The key modification of the fixative used in the current study was the addition of a small amount of sucrose, CaCl2, and detergent into a 4% (v/v) formaldehyde and 1% (v/v) glutaraldehyde mixture without the requirement to vacuum infiltrate. The modified immunofluorescence labeling method featured an amended blocking buffer, increased number of washing steps, and the use of an aqueous mounting medium which produced intense immunolabeling signals with extremely low background. Moreover, the immunocytochemistry methodology described in this study has proven to be suitable for use on two widely studied plant species, namely, Vicia faba and Arabidopsis thaliana, and may, therefore, be applicable for use in studies of a wide range of angiosperms.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号