Light scattered by a photodetector disturbs the probing field, resulting in noise. Cloaking is an effective method to reduce this noise. Here we investigate theoretically an emerging plasmonic material, zirconium nitride (ZrN), as a plasmonic cloak for silicon (Si) nanowire-based photodetectors and compare it with a traditional plasmonic material, gold (Au). Using Mie formalism, we have obtained the scattering cancelation across the visible spectrum. We found that ZrN cloaks produce a significant decrease in the scattering from bare Si nanowires, which is 40% greater than that obtained with Au cloaks in the wavelength region of 400–500 nm. The scattering cancelations become comparable at 550 nm, with Au providing a better scattering cancelation compared to ZrN over the wavelength region of 600–700 nm. To include the absorption and provide a measure of overall performance on noise reduction, a figure of merit (FOM), defined as the ratio of the absorption efficiency and the scattering efficiency of the cloaked nanowire to that of the bare Si nanowire, was calculated. We show that the optimized ZrN cloak provides up to 3 times enhancement of the FOM over a bare Si NW and a 60% improvement over an optimized Au-cloaked NW, in the wavelength region of 400–500 nm. An optimized Au-cloaked NW shows up to 17.69 times improvement in the wavelength region of 600–700 nm over a bare Si NW and up to a 2.7 times improvement over an optimized ZrN-cloaked NW. We also predicted the optimal dimensions for the cloaked NWs with respect to the largest FOM at various wavelengths between 400 and 650 nm.
A fast screening method was developed to assess the pathogenicity of a diverse collection of environmental and clinical Burkholderia cepacia complex isolates in the nematode Caenorhabditis elegans. The method was validated by comparison with the standard slow-killing assay. We observed that the pathogenicity of B. cepacia complex isolates in C. elegans was strain-dependent but species-independent. The wide range of observed pathogenic phenotypes agrees with the high degree of phenotypic variation among species of the B. cepacia complex and suggests that the taxonomic classification of a given strain within the complex cannot predict pathogenicity. 相似文献
Infection of the respiratory tract caused by Burkholderia cepacia complex poses a serious risk for cystic fibrosis (CF) patients due to the high morbidity and mortality associated with the chronic infection and the lack of efficacious antimicrobial treatments. A detailed understanding of the pathogenicity of B. cepacia complex infections is hampered in part by the limited availability of genetic tools and the inherent resistance of these isolates to the most common antibiotics used for genetic selection. In this study, we report the construction of an expression vector which uses the rhamnose-regulated P(rhaB) promoter of Escherichia coli. The functionality of the vector was assessed by expressing the enhanced green fluorescent protein (eGFP) gene (e-gfp) and determining the levels of fluorescence emission. These experiments demonstrated that P(rhaB) is responsive to low concentrations of rhamnose and it can be effectively repressed with 0.2% glucose. We also demonstrate that the tight regulation of gene expression by P(rhaB) promoter allows us to extend the capabilities of this vector to the identification of essential genes. 相似文献
The Mediterranean population of the exotic eastern mosquitofish Gambusia holbrooki (Agassiz 1859) (Osteichthyes, Poeciliidae) has been held responsible for causing eutrophication due to zooplankton removal and phytoplankton enhancement, however no experimental evidence exists of this. To test this allegation, an enclosure experiment was conducted in spring in an oligohaline coastal marsh. The manipulation of fish density had profound effects on zooplankton, whose density greatly decreased when the occurrence of mosquitofish increased. Cladocerans and ostracods were more affected by mosquitofish than cyclopoid copepods, whilst rotifer density was not modified. Changes in zooplankton density did not cascade to lower trophic levels as no differences were observed between the chlorophyll concentration in fish and fish-less enclosures. This is because zooplankton was dominated by species with low filter-feeding rates, such as small cladocerans. In consequence, the total macrophyte standing crop was not affected. The only benthic macroinvertebrate species whose density increased in the absence of eastern mosquitofish was the mud snail P. acuta. Higher numbers of snails explain why the standing crop of the filamentous green algae Oedogonium sp. decreased in fish-less enclosures. The density of chironomid midge larvae did not increase in fish-less enclosures, because eastern mosquitofish forage on them mainly during summer, when zooplankton has already been depleted; nor were damselflies, probably because they are too large. Nitrogen concentration decreased after fish exclusion, but phosphorus concentration remain unchanged. In conclusion, it was found that the eastern mosquitofish affect zooplankton of the Mediterranean oligohaline lagoons considerably, but they do not enhance phytoplankton growth, because the system is bottom-controlled by submerged macrophytes. 相似文献
We have analyzed brain structure in Macrostomum lignano, a representative of the basal platyhelminth taxon Macrostomida. Using confocal microscopy and digital 3D modeling software
on specimens labeled with general markers for neurons (tyrTub), muscles (phalloidin), and nuclei (Sytox), an atlas and digital
model of the juvenile Macrostomum brain was generated. The brain forms a ganglion with a central neuropile surrounded by a cortex of neuronal cell bodies.
The neuropile contains a stereotypical array of compact axon bundles, as well as branched terminal axons and dendrites. Muscle
fibers penetrate the flatworm brain horizontally and vertically at invariant positions. Beside the invariant pattern of neurite
bundles, these “cerebral muscles” represent a convenient system of landmarks that help define discrete compartments in the
juvenile brain. Commissural axon bundles define a dorsal and ventro-medial neuropile compartment, respectively. Longitudinal
axons that enter the neuropile through an invariant set of anterior and posterior nerve roots define a ventro-basal and a
central medial compartment in the neuropile. Flanking these “fibrous” compartments are neuropile domains that lack thick axon
bundles and are composed of short collaterals and terminal arborizations of neurites. Two populations of neurons, visualized
by antibodies against FMRFamide and serotonin, respectively, were mapped relative to compartment boundaries. This study will
aid in the documentation and interpretation of patterns of gene expression, as well as functional studies, in the developing
Macrostomum brain. 相似文献
The Sec16 homologue in Trypanosoma brucei has been identified and characterized. TbSec16 colocalizes with COPII components at the single endoplasmic reticulum exit site (ERES), which is next to the single Golgi stack in the insect (procyclic) form of this organism. Depletion of TbSec16 reduces the size of the ERES and the Golgi, and slows growth and transport of a secretory marker to the cell surface; conversely, overexpression of TbSec16 increases the size of the ERES and Golgi but has no effect on growth or secretion. Together these data suggest that TbSec16 regulates the size of the ERES and Golgi and this size is set for optimal growth of the organism. 相似文献
Oncogenic, activating mutations in KRAS initiate pancreatic cancer. There are, however, two other Ras family members, Nras and Hras, which can be activated in the presence of oncogenic Kras. The role of these wild-type Ras proteins in cancer remains unclear, as their disruption has been shown to enhance or inhibit tumorigenesis depending upon the context. As pancreatic cancer is critically dependent upon Ras signaling, we tested and now report that loss of Hras increases tumor load and reduces survival in an oncogenic Kras-driven pancreatic adenocarcinoma mouse model. These effects were traced to the earliest stages of pancreatic cancer, suggesting that wild-type Hras may suppress tumor initiation. In normal cells, activated Ras can suppress proliferation through p53-dependent mechanisms. We find that the tumor suppressive effects of Hras are nullified in a homozygous mutant p53 background. As such, loss of wild-type Hras fosters the earliest stages of pancreatic cancer in a p53-dependent manner. 相似文献
Nostoc punctiforme strain Pasteur Culture Collection (PCC) 73102, a sequenced filamentous cyanobacterium capable of nitrogen fixation, is used as a model organism for characterization of bioenergetic processes during nitrogen fixation in Nostoc . A protocol for isolating thylakoid membranes was developed to examine the biochemical and biophysical aspects of photosynthetic electron transfer. Thylakoids were isolated from filaments of N. punctiforme by pneumatic pressure-drop lysis. The activity of photosynthetic enzymes in the isolated thylakoids was analysed by measuring oxygen evolution activity, fluorescence spectroscopy and electron paramagnetic resonance spectroscopy. Electron transfer was found functional in both PSII and PSI. Electron transfer measurements in PSII, using diphenylcarbazide as electron donor and 2,6-dichlorophenolindophenol as electron acceptor, showed that 80% of the PSII centres were active in water oxidation in the final membrane preparation. Analysis of the membrane protein complexes was made by 2D gel electrophoresis, and identification of representative proteins was made by mass spectrometry. The ATP synthase, several oligomers of PSI, PSII and the NAD(P)H dehydrogenase (NDH)-1L and NDH-1M complexes, were all found in the gels. Some differences were noted compared with previous results from Synechocystis sp. PCC 6803. Two oligomers of PSII were found, monomeric and dimeric forms, but no CP43-less complexes. Both dimeric and monomeric forms of Cyt b 6/ f could be observed. In all, 28 different proteins were identified, of which 25 are transmembrane proteins or membrane associated ones. 相似文献
Low dose aerosol infection of C57BL/6 mice with a clinical strain of Mycobacterium tuberculosis (UTE 0335 R) induced intragranulomatous necrosis in pulmonary granulomas (INPG) at week 9 postinfection. Infection of different knockout (KO) mouse strains with UTE 0335 R induced INPG in all strains and established two histopathological patterns. The first pattern was seen in SCID mice and in mice with deleted alpha/beta T receptor, TNF R1, IL-12, IFN-gamma, or iNOS genes, and showed a massive INPG with a high granulomatous infiltration of the lung, a large and homogeneous eosinophilic necrosis full of acid-fast bacilli, with marked karyorrhexis, coarse basophilic necrosis, and surrounded by patches delimited by partially conserved alveolar septum full of PMNs. The second pattern was seen in mice with deleted IL-1 R1, IL-6, IL-10, CD4, CD8 or gamma/delta T cell receptor genes, and showed more discrete lesions with predominant homogeneous eosinophilic necrosis with few bacilli and surrounded by a well-defined lymphocyte-based ring. Local expression of IFN-gamma, iNOS, TNF and RANTES showed no significant differences between these mouse strains generating a discrete INPG. Mouse strains showing a massive INPG showed higher, lower or equal expression values compared to the control strain. In conclusion, the severity of the INPG pattern correlated with pulmonary CFU counts, irrespective of the genetic absence or the infection-induced levels of cytokine mediators. 相似文献