首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   37篇
  2024年   2篇
  2023年   4篇
  2022年   4篇
  2021年   12篇
  2020年   6篇
  2019年   3篇
  2018年   16篇
  2017年   15篇
  2016年   17篇
  2015年   26篇
  2014年   27篇
  2013年   31篇
  2012年   62篇
  2011年   48篇
  2010年   35篇
  2009年   29篇
  2008年   32篇
  2007年   34篇
  2006年   23篇
  2005年   34篇
  2004年   20篇
  2003年   23篇
  2002年   16篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   8篇
  1994年   5篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1965年   1篇
  1949年   1篇
  1919年   1篇
排序方式: 共有594条查询结果,搜索用时 78 毫秒
131.
132.
Argonaute 2 (Ago2) protein is a central effector of RNA interference (RNAi) pathways and regulates mammalian genes on a global level. The mechanisms of Ago2-mediated silencing are well understood, but less is known about its regulation. Recent reports indicate that phosphorylation significantly affects Ago2 activity. Here, we investigated the effect of mutating all known phospho-residues within Ago2 on its localization and activity. Ago2 associates with two different cytoplasmic RNA granules known as processing bodies (P-bodies) and stress granules, but the nature of this phenomenon is controversial. We report that replacing serine with a phospho-mimetic aspartic acid at position 798 completely abrogates association of Ago2 with P-bodies and stress granules. The effect of this mutation on its activity in gene silencing was modest, which was surprising because association of Ago2 with cytoplasmic RNA granules is thought to be a consequence of its role in RNAi. As such, our data indicate that targeting of Ago2 to P-bodies and stress granules is separable from its role in RNAi and likely requires dynamic phosphorylation of serine 798.  相似文献   
133.
YjeQ (also called RsgA) and RbfA proteins in Escherichia coli bind to immature 30S ribosome subunits at late stages of assembly to assist folding of the decoding center. A key step for the subunit to enter the pool of actively translating ribosomes is the release of these factors. YjeQ promotes dissociation of RbfA during the final stages of maturation; however, the mechanism implementing this functional interplay has not been elucidated. YjeQ features an amino-terminal oligonucleotide/oligosaccharide binding domain, a central GTPase module and a carboxy-terminal zinc-finger domain. We found that the zinc-finger domain is comprised of two functional motifs: the region coordinating the zinc ion and a carboxy-terminal α-helix. The first motif is essential for the anchoring of YjeQ to the 30S subunit and the carboxy-terminal α-helix facilitates the removal of RbfA once the 30S subunit reaches the mature state. Furthermore, the ability of the mature 30S subunit to stimulate YjeQ GTPase activity also depends on the carboxy-terminal α-helix. Our data are consistent with a model in which YjeQ uses this carboxy-terminal α-helix as a sensor to gauge the conformation of helix 44, an essential motif of the decoding center. According to this model, the mature conformation of helix 44 is sensed by the carboxy-terminal α-helix, which in turn stimulates the YjeQ GTPase activity. Hydrolysis of GTP is believed to assist the release of YjeQ from the mature 30S subunit through a still uncharacterized mechanism. These results identify the structural determinants in YjeQ that implement the functional interplay with RbfA.  相似文献   
134.
135.
The mucosal immune network is a crucial barrier preventing pathogens from entering the body. The network of immune cells that mediates the defensive mechanisms in the mucosa is likely shaped by chemokines, which attract a wide range of immune cells to specific sites of the body. Chemokines have been divided into homeostatic or inflammatory depending upon their expression patterns. Additionally, several chemokines mediate direct killing of invading pathogens, as exemplified by CCL28, a mucosa-associated chemokine that exhibits antimicrobial activity against a range of pathogens. CXCL17 was the last chemokine ligand to be described and is the 17th member of the CXC chemokine family. Its expression pattern in 105 human tissues and cells indicates that CXCL17 is a homeostatic, mucosa-associated chemokine. Its strategic expression in mucosal tissues suggests that it is involved in innate immunity and/or sterility of the mucosa. To test the latter hypothesis, we tested CXCL17 for possible antibacterial activity against a panel of pathogenic and opportunistic bacteria. Our results indicate that CXCL17 has potent antimicrobial activities and that its mechanism of antimicrobial action involves peptide-mediated bacterial membrane disruption. Because CXCL17 is strongly expressed in bronchi, we measured it in bronchoalveolar lavage fluids and observed that it is strongly upregulated in idiopathic pulmonary fibrosis. We conclude that CXCL17 is an antimicrobial mucosal chemokine that may play a role in the pathogenesis of interstitial lung diseases.  相似文献   
136.
Induction of Specific MicroRNAs Inhibits Cutaneous Wound Healing   总被引:1,自引:0,他引:1  
Chronic nonhealing wounds, such as venous ulcers (VUs), are a widespread and serious medical problem with high morbidity and mortality. The molecular pathology of VUs remains poorly understood, impeding the development of effective treatment strategies. Using mRNA expression profiling of VUs biopsies and computational analysis, we identified a candidate set of microRNAs with lowered target gene expression. Among these candidates, miR-16, -20a, -21, -106a -130a, and -203 were confirmed to be aberrantly overexpressed in a cohort study of 10 VU patients by quantitative PCR and in situ hybridizations. These microRNAs were predicted to target multiple genes important for wound healing, including early growth response factor 3, vinculin, and leptin receptor (LepR). Overexpression of the top up-regulated miRNAs, miR-21 and miR-130a, in primary human keratinocytes down-regulated expression of the endogenous LepR and early growth response factor 3. The luciferase reporter assay verified LepR as a direct target for miR-21 and miR-130a. Both miR-21 and miR-130a delayed epithelialization in an acute human skin wound model. Furthermore, in vivo overexpression of miR-21 inhibited epithelialization and granulation tissue formation in a rat wound model. Our results identify a novel mechanism in which overexpression of specific set of microRNAs inhibits wound healing, resulting in new potential molecular markers and targets for therapeutic intervention.  相似文献   
137.
Many protein species produced in recombinant bacteria aggregate as insoluble protein clusters named inclusion bodies (IBs). IBs are discarded from further processing or are eventually used as a pure protein source for in vitro refolding. Although usually considered as waste byproducts of protein production, recent insights into the physiology of recombinant bacteria and the molecular architecture of IBs have revealed that these protein particles are unexpected functional materials. In this Opinion article, we present the relevant mechanical properties of IBs and discuss the ways in which they can be explored as biocompatible nanostructured materials, mainly, but not exclusively, in biocatalysis and tissue engineering.  相似文献   
138.
Pneumococcal surface protein A (PspA) is essential for Streptococcus pneumoniae virulence and its use either as a novel pneumococcal vaccine or as carrier in a conjugate vaccine would improve the protection and the coverage of the vaccine. Within this context, the development of scalable production and purification processes of His-tagged recombinant fragment of PspA from clade 3 (rfPspA3) in Escherichia coli BL21(DE3) was proposed. Fed-batch production was performed using chemically defined medium with glucose or glycerol as carbon source. Although the use of glycerol led to lower acetate production, the concentration of cells were similar at the end of both fed-batches, reaching high cell density of E. coli (62 g dry cell weight/L), and the rfPspA3 production was higher with glucose (3.48 g/L) than with glycerol (2.97 g/L). A study of downstream process was also carried out, including cell disruption and clarification steps. Normally, the first chromatography step for purification of His-tagged proteins is metal affinity. However, the purification design using anion exchange followed by metal affinity gave better results for rfPspA3 than the opposite sequence. Performing this new design of chromatography steps, rfPspA3 was obtained with 95.5% and 75.9% purity, respectively, from glucose and glycerol culture. Finally, after cation exchange chromatography, rfPspA3 purity reached 96.5% and 90.6%, respectively, from glucose and glycerol culture, and the protein was shown to have the expected alpha-helix secondary structure.  相似文献   
139.
Here, we determined the effect of bovine lactoferrin (bLF) on the minimum inhibitory concentration (MIC) of ampicillin and trimethoprim-sulfamethoxazole in Shigella . Using a microdilution method, the MIC was determined in the presence or absence of bovine lactoferrin (10 mg/mL) on 88 Shigella strains (56 Shigella flexneri , 15 Shigella boydii , 13 Shigella sonnei , and 4 Shigella dysenteriae ) previously isolated from peruvian children <2 years old. A fold change of 2 or more in MIC values was considered significant. For ampicillin, 67 (76%) strains were highly resistant; one-third of the strains (32%) showed a decrease in ampicillin MIC in the presence of LF. This was more typical of MIC values in less resistant strains. For 7 (8%) ampicillin-resistant strains, the decrease in the MIC resulted in the strains reaching the cutoff for susceptible in the presence of bLF. For trimethoprim-sulfamethoxazole, 93% of the isolates (n = 82) were highly resistant and only 4 isolates (5%) decreased their MIC in the presence of bLF. None of the trimethoprim-sulfamethoxazole resistant strains became susceptible in the presence of LF. The decrease in the MIC in the presence of bLF seems to depend on the mechanisms of action of each antibiotic. In vivo studies are needed to further evaluate bLF as a coadjuvant to antibiotic treatment of resistant Shigella.  相似文献   
140.
Hemicentins are conserved extracellular matrix proteins characterized by a single von Willebrand A (VWA) domain at the amino terminus, a long stretch (>40) of tandem immunoglobulin domains, multiple tandem epidermal growth factors (EGFs), and a single fibulin-like carboxyl-terminal module. In Caenorhabditis elegans, hemicentin is secreted from muscle and gonadal leader cells and assembles at multiple locations into discrete tracks that constrict broad regions of cell contact into adhesive and flexible line-shaped junctions. To determine hemicentin domains critical for function and assembly, we have expressed fragments of hemicentin as GFP tagged fusion proteins in C. elegans. We find that a hemicentin fragment containing the VWA domain can target to multiple assembly sites when expressed under the control of either endogenous hemicentin regulatory sequences or the muscle-specific unc-54 promoter. A hemicentin fragment containing the EGF and fibulin-like carboxyl-terminal modules can co-assemble with existing hemicentin polymers in wild-type animals but has no detectable function in the absence of endogenous hemicentin. The data suggest that the VWA domain is a cell binding domain whose function is to target hemicentin to sites of assembly and the EGF/fibulin-like carboxyl-terminal modules constitute an assembly domain that mediates direct interactions between hemicentin monomers during the hemicentin assembly process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号