首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   27篇
  2024年   2篇
  2023年   3篇
  2022年   3篇
  2021年   12篇
  2020年   5篇
  2019年   2篇
  2018年   14篇
  2017年   10篇
  2016年   17篇
  2015年   22篇
  2014年   20篇
  2013年   25篇
  2012年   53篇
  2011年   35篇
  2010年   26篇
  2009年   17篇
  2008年   18篇
  2007年   23篇
  2006年   14篇
  2005年   17篇
  2004年   16篇
  2003年   17篇
  2002年   10篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1965年   1篇
  1949年   1篇
  1919年   1篇
排序方式: 共有435条查询结果,搜索用时 15 毫秒
391.
The chemokine stromal cell-derived factor-1alpha (SDF-1alpha) is expressed by bone marrow (BM) stromal cells and plays key roles in cell homing to and retention into the bone marrow. In multiple myeloma, blood-borne malignant plasma cells home to the BM and accumulate in contact with stromal cells, implicating myeloma cell migration across endothelium. Myeloma cells express the SDF-1alpha receptor CXCR4, as well as the integrin alpha4beta1, which mediates their attachment to BM stroma. We show here that SDF-1alpha promotes transendothelial migration of purified BM myeloma cells and myeloma-derived NCI-H929 cells, involving a transient upregulation of alpha4beta1-dependent cell adhesion to the endothelium. Characterization of intracellular signaling pathways involved in the modulation by SDF-1alpha of alpha4beta1-mediated myeloma cell adhesion revealed that intracellular cAMP amounts associated with the activation of protein kinase A play key roles in this modulation. Furthermore, a functional link between cAMP actions on the dynamics of actin cytoskeleton, RhoA activation, and alpha4beta1-dependent cell adhesion in response to SDF-1alpha has been found. The regulation of alpha4beta1-mediated myeloma cell adhesion by SDF-1alpha could play key roles during myeloma cell homing into and trafficking inside the BM, and characterization of the molecular events involved in SDF-1alpha-activated modulation of this adhesion will contribute to a better understanding of mechanisms participating in cell migration.  相似文献   
392.
TCR engagement can induce either T cell proliferation and differentiation or activation-induced T cell death (AICD) through apoptosis. The intracellular signaling pathways that dictate such a disparate fate after TCR engagement have only been partially elucidated. Non-FcR-binding anti-CD3 mAbs induce a partial agonist TCR signaling pattern and cause AICD on Ag-activated, cycling T cells. In this study, we examined TCR signaling during the induction of AICD by anti-CD3 fos, a non-FcR-binding anti-CD3 mAb. This mAb activates Fyn, Lck, and extracellular signal-regulated kinase, and induces phosphorylation of Src-like adapter protein, despite the inability to cause calcium mobilization or TCR polarization. Anti-CD3 fos also fails to effectively activate zeta-associated protein of 70 kDa or NF-kappaB. Using Ag-specific T cells deficient for Fyn or Lck, we provide compelling evidence that activation of Lck is required for the induction of AICD. Our data indicate that a selective and distinct TCR signaling pattern is required for AICD by TCR partial agonist ligands.  相似文献   
393.
Summary While formaldehyde fixation preserves tissue morphology, it often hinders immunodetection of antigens in paraffin-embedded tissue because the antigens are masked. Antigen unmasking can be achieved with treatments such as microwave irradiation but they often lead to excessive tissue damage. Therefore, an electrochemical antigen-retrieval method (EAR) was devised in which an alternating electric current is passed through the tissue in a chamber containing an electrolyte buffer. The results obtained with this method were compared to those after microwave irradiation using archived samples of formaldehyde-fixed and paraffin-embedded lepromatous leprosy skin. The efficacy of the two unmasking procedures was assessed by the immunodetectability of several marker antigens using 24 antibodies. Fifteen antibodies that were directed against transmembrane proteins (CD), and the remaining 9 against cytokeratins 18.6 and 19, laminin, vimentin, S100a, BCG,Ulex europaeus lectin, PCNA, and P21^ras. Simple and double immunohistochemistry was performed using the universal ENVISION and LSAB + AP detection systems. After unmasking with the EAR method, immunoreactivity was clearly detected with 22 of the 24 antibodies in single labeling reactions. They include the critical antigens CD3 and CD4 for identifying the T lymphocyte lineages. In contrast, only 20 of the antibodies reacted after microwave irradiation. After double immunolabeling, immunoreactivity was quantitatively similar with both methods. However, the EAR unmasking produced a stronger labeling reaction. Thus, with double labeling immunohistochemistry, EAR made it possible to use higher antibody dilutions and shorter incubation times. Heat damage was also prevented. In conclusion, EAR treatment produces better staining results than microwave irradiation treatment.  相似文献   
394.
The Escherichia coli ATP-dependent ClpAP and ClpXP proteases are composed of a single proteolytic component, ClpP, complexed with either of the two related chaperones, ClpA or ClpX. ClpXP and ClpAP complexes interact with different specific substrates and catalyze ATP-dependent protein unfolding and degradation. In vitro in the presence of ATP or ATPgammaS, ClpA and ClpX form homomeric rings of six subunits, which bind to one or both ends of the double heptameric rings of ClpP. We have observed that, when equimolar amounts of ClpA and ClpX hexamers are added to ClpP in vitro in the presence of ATP or ATPgammaS, hybrid complexes in which ClpX and ClpA are bound to opposite ends of the same ClpP are readily formed. The distribution of homomeric and heteromeric complexes was consistent with random binding of ClpA and ClpX to the ends of ClpP. Direct demonstration of the functionality of the heteromeric complexes was obtained by electron microscopy, which allowed us to visualize substrate translocation into proteolytically inactive ClpP chambers. Starting with hybrid complexes to which protein substrates specific to ClpX or ClpA were bound, translocation of both types of substrates was shown to occur without significant redistribution of ClpA or ClpX. The stoichiometric ratios of the ClpA, ClpX, and ClpP oligomeric complexes in vivo are consistent with the predominance of heteromeric complexes in growing cells. Thus, ClpXAP is a bifunctional protease whose two ends can independently target different classes of substrates.  相似文献   
395.
Fibulins are evolutionarily conserved extracellular matrix (ECM) proteins that assemble in elastic fibers and basement membranes. Caenorhabditis elegans has a single fibulin gene that produces orthologs of vertebrate fibulin-1 C and D splice forms. In a structure-function analysis of fibulin-1 domains, a series of deletion constructs show that EGF repeats 4 and 5 are required for the hemicentin-dependent assembly and function of fibulin-1D in native locations. In contrast, constructs missing the second EGF repeat of fibulin-1D (EGF2D) assemble in ectopic locations in a hemicentin dependent manner. Constructs that contain EGF2D are cleaved into two fragments, but constructs with EGF2D missing are not, suggesting that a protease binds and/or cleaves fibulin-1D at a site that is likely within EGF2D. Together, the data suggests that EGF repeats 4 and 5 promote interaction with hemicentin while a region within EGF2D suppresses ectopic interactions with hemicentin and this suppression may be protease dependent.  相似文献   
396.
We assessed the effects of deforestation on soil carbon (C) and nutrient stocks in the premontane landscape near Las Cruces Biological Station in southern Costa Rica, where forests were cleared for pasture in the mid‐1960s. We excavated six soil pits to a depth of 1 m in both pasture and primary forest, and found that C stocks were ~20 kg C/m2 in both settings. Nevertheless, soil δ13C suggests ~50 percent of the forest‐derived soil C above 40 cm depth has turned over since deforestation. Soil nitrogen (N) and phosphorus (P) stocks derived from the soil pits were not significantly different between land uses (P = 0.43 and 0.61, respectively). At a larger spatial scale, however, the ubiquity of ruts produced by cattle‐induced erosion indicates that there are substantial soil effects of grazing in this steep landscape. Ruts averaged 13 cm deep and covered ~45 percent of the landscape, and thus are evidence of the removal of 0.7 Mg C/ha/yr, and 70, 9 and 40 kg/ha/yr of N, P and potassium (K), respectively. Subsoils in this region are ~10 times less C‐ and N‐rich, and ~2 times less P‐ and K‐rich than the topsoil. Thus, rapid topsoil loss may lead to a decline in pasture productivity in the coming decades. These data also suggest that the soil C footprint of deforestation in this landscape may be determined by the fate of soil C as it is transported downstream, rather than C turnover in situ.  相似文献   
397.
Francisella tularensis, a Gram‐negative bacterium that causes the disease tularemia in a large number of animal species, is thought to reside preferentially within macrophages in vivo. F. tularensis has developed mechanisms to rapidly escape from the phagosome into the cytoplasm of infected cells, a habitat with a rich supply of nutrients, ideal for multiplication. SLC1A5 is a neutral amino acid transporter expressed by human cells, which serves, along with SLC7A5 to equilibrate cytoplasmic amino acid pools. We herein analysed whether SLC1A5 was involved in F. tularensis intracellular multiplication. We demonstrate that expression of SLC1A5 is specifically upregulated by F. tularensis in infected THP‐1 human monocytes. Furthermore, we show that SLC1A5 downregulation decreases intracellular bacterial multiplication, supporting the involvement of SLC1A5 in F. tularensis infection. Notably, after entry of F. tularensis into cells and during the whole infection, the highly glycosylated form of SLC1A5 was deglycosylated only by bacteria capable of cytosolic multiplication. These data suggest that intracellular replication of F. tularensis depends on the function of host cell SLC1A5. Our results are the first, which show that Francisella intracellular multiplication in human monocyte cytoplasm is associated with a post‐translational modification of a eukaryotic amino acid transporter.  相似文献   
398.
399.
Aging in worms and flies is regulated by the PI3K/Akt/Foxo pathway. Here we extend this paradigm to mammals. Pten(tg) mice carrying additional genomic copies of Pten are protected from cancer and present a significant extension of life span that is independent of their lower cancer incidence. Interestingly, Pten(tg) mice have an increased energy expenditure and protection from metabolic pathologies. The brown adipose tissue (BAT) of Pten(tg) mice is hyperactive and presents high levels of the uncoupling protein Ucp1, which we show is a target of Foxo1. Importantly, a synthetic PI3K inhibitor also increases energy expenditure and hyperactivates the BAT in mice. These effects can be recapitulated in isolated brown adipocytes and, moreover, implants of Pten(tg) fibroblasts programmed with Prdm16 and Cebpβ form subcutaneous brown adipose pads more efficiently than wild-type fibroblasts. These observations uncover a role of Pten in promoting energy expenditure, thus decreasing nutrient storage and its associated damage.  相似文献   
400.
The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for survival. Potassium is the most abundant cation in living cells and is required for essential cellular processes, including the regulation of cell volume, pH and protein synthesis. Yeast cells can grow from low micromolar to molar potassium concentrations and utilize sophisticated control mechanisms to keep the internal potassium concentration in a viable range. We developed a mathematical model for Saccharomyces cerevisiae to explore the complex interplay between biophysical forces and molecular regulation facilitating potassium homeostasis. By using a novel inference method ("the reverse tracking algorithm") we predicted and then verified experimentally that the main regulators under conditions of potassium starvation are proton fluxes responding to changes of potassium concentrations. In contrast to the prevailing view, we show that regulation of the main potassium transport systems (Trk1,2 and Nha1) in the plasma membrane is not sufficient to achieve homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号