全文获取类型
收费全文 | 652篇 |
免费 | 49篇 |
专业分类
701篇 |
出版年
2023年 | 9篇 |
2022年 | 13篇 |
2021年 | 22篇 |
2020年 | 16篇 |
2019年 | 11篇 |
2018年 | 19篇 |
2017年 | 25篇 |
2016年 | 30篇 |
2015年 | 38篇 |
2014年 | 45篇 |
2013年 | 63篇 |
2012年 | 68篇 |
2011年 | 60篇 |
2010年 | 28篇 |
2009年 | 32篇 |
2008年 | 29篇 |
2007年 | 28篇 |
2006年 | 18篇 |
2005年 | 34篇 |
2004年 | 19篇 |
2003年 | 16篇 |
2002年 | 15篇 |
2001年 | 6篇 |
2000年 | 2篇 |
1999年 | 6篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 6篇 |
1993年 | 2篇 |
1992年 | 5篇 |
1991年 | 3篇 |
1989年 | 4篇 |
1985年 | 3篇 |
1984年 | 1篇 |
1981年 | 1篇 |
1979年 | 2篇 |
1978年 | 3篇 |
1977年 | 2篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1936年 | 1篇 |
排序方式: 共有701条查询结果,搜索用时 0 毫秒
31.
Schwarzbraun T Vincent JB Schumacher A Geschwind DH Oliveira J Windpassinger C Ofner L Ledinegg MK Kroisel PM Wagner K Petek E 《Genomics》2004,84(3):577-586
Previously, we have described the clinical and molecular characterization of a de novo 14q13.1-q21.1 microdeletion, less than 3.5 Mb in size, in a patient with severe microcephaly, psychomotor retardation, and other clinical anomalies. Here we report the characterization of the genomic structure of the human tuberin-like protein gene 1 (TULIP1; approved gene symbol GARNL1), a CpGisland-associated, brain-expressed candidate gene for the neurological findings in our patient, and its murine homologue. The human TULIP1 gene was mapped to chromosome band 14q13.2 by fluorescence in situ hybridization of BAC clone RP11-355C3 (GenBank Accession No. AL160231), containing the 3' region of the gene. TULIP1 spans about 271 kb of human genomic DNA and is divided into 41 exons. An untranscribed, processed pseudogene of TULIP1 was found on human chromosome band 9q31.1. The active locus TULIP1, encoding a predicted protein of 2036 amino acids, is expressed ubiquitously in pre- and postnatal human tissues. The murine homologue Tulip1 spans about 220 kb of mouse genomic DNA and is also divided into 41 exons, encoding a predicted protein of 2035 amino acids. No pseudogene could be found in the available mouse sequence data. Several splicing variants were found. Considering the location, expression profile, and predicted function, TULIP1 is a strong candidate for several neurological features seen in 14q deletion patients. Additionally we searched for mutations in the coding region of TULIP1 in subjects from a family with idiopathic basal ganglia calcification (IBGC; Fahr disease), previously linked to chromosome 14q. We identified two novel SNPs in the intron-exon boundaries; however, they did not segregate only with affected subjects in the predicted model of an autosomal dominant disease such as IBGC. 相似文献
32.
Paulo R. L. Bittencourt Rafael S. Oliveira Antonio C. L. da Costa Andre L. Giles Ingrid Coughlin Patricia B. Costa David C. Bartholomew Leandro V. Ferreira Steel S. Vasconcelos Fernanda V. Barros Joao A. S. Junior Alex A. R. Oliveira Maurizio Mencuccini Patrick Meir Lucy Rowland 《Global Change Biology》2020,26(6):3569-3584
The fate of tropical forests under future climate change is dependent on the capacity of their trees to adjust to drier conditions. The capacity of trees to withstand drought is likely to be determined by traits associated with their hydraulic systems. However, data on whether tropical trees can adjust hydraulic traits when experiencing drought remain rare. We measured plant hydraulic traits (e.g. hydraulic conductivity and embolism resistance) and plant hydraulic system status (e.g. leaf water potential, native embolism and safety margin) on >150 trees from 12 genera (36 species) and spanning a stem size range from 14 to 68 cm diameter at breast height at the world's only long‐running tropical forest drought experiment. Hydraulic traits showed no adjustment following 15 years of experimentally imposed moisture deficit. This failure to adjust resulted in these drought‐stressed trees experiencing significantly lower leaf water potentials, and higher, but variable, levels of native embolism in the branches. This result suggests that hydraulic damage caused by elevated levels of embolism is likely to be one of the key drivers of drought‐induced mortality following long‐term soil moisture deficit. We demonstrate that some hydraulic traits changed with tree size, however, the direction and magnitude of the change was controlled by taxonomic identity. Our results suggest that Amazonian trees, both small and large, have limited capacity to acclimate their hydraulic systems to future droughts, potentially making them more at risk of drought‐induced mortality. 相似文献
33.
Wardah Alasmari Sarah Costello Joao Correia Senga K. Oxenham Jennifer Morris Leonor Fernandes Joao Ramalho-Santos Jackson Kirkman-Brown Francesco Michelangeli Stephen Publicover Christopher L. R. Barratt 《The Journal of biological chemistry》2013,288(9):6248-6258
[Ca2+]i signaling regulates sperm motility, enabling switching between functionally different behaviors that the sperm must employ as it ascends the female tract and fertilizes the oocyte. We report that different behaviors in human sperm are recruited according to the Ca2+ signaling pathway used. Activation of CatSper (by raising pHi or stimulating with progesterone) caused sustained [Ca2+]i elevation but did not induce hyperactivation, the whiplash-like behavior required for progression along the oviduct and penetration of the zona pellucida. In contrast, penetration into methylcellulose (mimicking penetration into cervical mucus or cumulus matrix) was enhanced by activation of CatSper. NNC55-0396, which abolishes CatSper currents in human sperm, inhibited this effect. Treatment with 5 μm thimerosal to mobilize stored Ca2+ caused sustained [Ca2+]i elevation and induced strong, sustained hyperactivation that was completely insensitive to NNC55-0396. Thimerosal had no effect on penetration into methylcellulose. 4-Aminopyridine, a powerful modulator of sperm motility, both raised pHi and mobilized Ca2+ stored in sperm (and from microsomal membrane preparations). 4-Aminopyridine-induced hyperactivation even in cells suspended in Ca2+-depleted medium and also potentiated penetration into methylcellulose. The latter effect was sensitive to NNC55-039, but induction of hyperactivation was not. We conclude that these two components of the [Ca2+]i signaling apparatus have strikingly different effects on sperm motility. Furthermore, since stored Ca2+ at the sperm neck can be mobilized by Ca2+-induced Ca2+ release, we propose that CatSper activation can elicit functionally different behaviors according to the sensitivity of the Ca2+ store, which may be regulated by capacitation and NO from the cumulus. 相似文献
34.
Matthias C. Truttmann Qin Wu Sarah Stiegeler Joao N. Duarte Jessica Ingram Hidde L. Ploegh 《The Journal of biological chemistry》2015,290(14):9087-9100
The covalent addition of mono-AMP to target proteins (AMPylation) by Fic domain-containing proteins is a poorly understood, yet highly conserved post-translational modification. Here, we describe the generation, evaluation, and application of four HypE-specific nanobodies: three that inhibit HypE-mediated target AMPylation in vitro and one that acts as an activator. All heavy chain-only antibody variable domains bind HypE when expressed as GFP fusions in intact cells. We observed localization of HypE at the nuclear envelope and further identified histones H2–H4, but not H1, as novel in vitro targets of the human Fic protein. Its role in histone modification provides a possible link between AMPylation and regulation of gene expression. 相似文献
35.
Mireia Perez Verdaguer Tian Zhang Joao A. Paulo Steven Gygi Simon C. Watkins Hiroaki Sakurai Alexander Sorkin 《The Journal of cell biology》2021,220(7)
Ligand binding triggers clathrin-mediated and, at high ligand concentrations, clathrin-independent endocytosis of EGFR. Clathrin-mediated endocytosis (CME) of EGFR is also induced by stimuli activating p38 MAPK. Mechanisms of both ligand- and p38-induced endocytosis are not fully understood, and how these pathways intermingle when concurrently activated remains unknown. Here we dissect the mechanisms of p38-induced endocytosis using a pH-sensitive model of endogenous EGFR, which is extracellularly tagged with a fluorogen-activating protein, and propose a unifying model of the crosstalk between multiple EGFR endocytosis pathways. We found that a new locus of p38-dependent phosphorylation in EGFR is essential for the receptor dileucine motif interaction with the σ2 subunit of clathrin adaptor AP2 and concomitant receptor internalization. p38-dependent endocytosis of EGFR induced by cytokines was additive to CME induced by picomolar EGF concentrations but constrained to internalizing ligand-free EGFRs due to Grb2 recruitment by ligand-activated EGFRs. Nanomolar EGF concentrations rerouted EGFR from CME to clathrin-independent endocytosis, primarily by diminishing p38-dependent endocytosis. 相似文献
36.
37.
doi: 10.1111/j.1741‐2358.2011.00569.x Influence of different mucosal resiliency and denture reline on stress distribution in peri‐implant bone tissue during osseointegration. A three‐dimensional finite element analysis Objective: The aim of this study was to evaluate the influence of mucosal properties and relining material on the stress distribution in peri‐implant bone tissue during masticatory function with a conventional complete denture during the healing period through finite element analysis. Materials and Methods: Three‐dimensional models of a severely resorbed mandible with two recently placed implants in the anterior region were created and divided into the following situations: (i) conventional complete denture and (ii) relined denture with soft lining material. The mucosal tissue properties were divided into soft, resilient and hard. The models were exported to mechanical simulation software; two simulations were carried out with a load at the lower right canine (35 N) and the lower right first molar (50 N). Data were qualitatively evaluated using Maximum Principal Stress, in MPa, given by the software. Results: All models showed stress concentrations in the cortical bone corresponding to the cervical part of the implant. The mucosal properties influenced the stress in peri‐implant bone tissue showing a different performance according to the denture base material. The simulations with relined dentures showed lower values of stress concentration than conventional ones. Conclusions: It seems that the mucosal properties and denture reline have a high influence on the stress distribution in the peri‐implant bone during the healing period. 相似文献
38.
39.
40.
Alexandre Rea Andre G. Tempone Erika G. Pinto Juliana T. Mesquita Eliana Rodrigues Luciana Grus M. Silva Patricia Sartorelli Jo?o Henrique G. Lago 《PLoS neglected tropical diseases》2013,7(12)
Chagas disease is caused by the parasitic protozoan Trypanosoma cruzi. It has high mortality as well as morbidity rates and usually affects the poorer sections of the population. The development of new, less harmful and more effective drugs is a promising research target, since current standard treatments are highly toxic and administered for long periods. Fractioning of methanol (MeOH) extract of the stem bark of Calophyllum brasiliense (Clusiaceae) resulted in the isolation of the coumarin soulamarin, which was characterized by one- and two-dimensional 1H- and 13C NMR spectroscopy as well as ESI mass spectrometry. All data obtained were consistent with a structure of 6-hydroxy-4-propyl-5-(3-hydroxy-2-methyl-1-oxobutyl)-6″,6″-dimethylpyrane-[2″,3″:8,7]-benzopyran-2-one for soulamarin. Colorimetric MTT assays showed that soulamarin induces trypanocidal effects, and is also active against trypomastigotes. Hemolytic activity tests showed that soulamarin is unable to induce any observable damage to erythrocytes (cmax. = 1,300 µM). The lethal action of soulamarin against T. cruzi was investigated by using amino(4-(6-(amino(iminio)methyl)-1H-indol-2-yl)phenyl)methaniminium chloride (SYTOX Green and 1H,5H,11H,15H-Xantheno[2,3,4-ij:5,6,7-i′j′]diquinolizin-18-ium, 9-[4-(chloromethyl)phenyl]-2,3,6,7,12,13,16,17-octahydro-chloride (MitoTracker Red) as fluorimetric probes. With the former, soulamarin showed dose-dependent permeability of the plasma membrane, relative to fully permeable Triton X-100-treated parasites. Spectrofluorimetric and fluorescence microscopy with the latter revealed that soulamarin also induced a strong depolarization (ca. 97%) of the mitochondrial membrane potential. These data demonstrate that the lethal action of soulamarin towards T. cruzi involves damages to the plasma membrane of the parasite and mitochondrial dysfunction without the additional generation of reactive oxygen species, which may have also contributed to the death of the parasites. Considering the unique mitochondrion of T. cruzi, secondary metabolites of plants affecting the bioenergetic system as soulamarin may contribute as scaffolds for the design of novel and selective drug candidates for neglected diseases, mainly Chagas disease. 相似文献