排序方式: 共有55条查询结果,搜索用时 15 毫秒
31.
Louisiane Lemaire Mathieu Desroches Martin Krupa Lara Pizzamiglio Paolo Scalmani Massimo Mantegazza 《PLoS computational biology》2021,17(7)
Loss of function mutations of SCN1A, the gene coding for the voltage-gated sodium channel NaV1.1, cause different types of epilepsy, whereas gain of function mutations cause sporadic and familial hemiplegic migraine type 3 (FHM-3). However, it is not clear yet how these opposite effects can induce paroxysmal pathological activities involving neuronal networks’ hyperexcitability that are specific of epilepsy (seizures) or migraine (cortical spreading depolarization, CSD). To better understand differential mechanisms leading to the initiation of these pathological activities, we used a two-neuron conductance-based model of interconnected GABAergic and pyramidal glutamatergic neurons, in which we incorporated ionic concentration dynamics in both neurons. We modeled FHM-3 mutations by increasing the persistent sodium current in the interneuron and epileptogenic mutations by decreasing the sodium conductance in the interneuron. Therefore, we studied both FHM-3 and epileptogenic mutations within the same framework, modifying only two parameters. In our model, the key effect of gain of function FHM-3 mutations is ion fluxes modification at each action potential (in particular the larger activation of voltage-gated potassium channels induced by the NaV1.1 gain of function), and the resulting CSD-triggering extracellular potassium accumulation, which is not caused only by modifications of firing frequency. Loss of function epileptogenic mutations, on the other hand, increase GABAergic neurons’ susceptibility to depolarization block, without major modifications of firing frequency before it. Our modeling results connect qualitatively to experimental data: potassium accumulation in the case of FHM-3 mutations and facilitated depolarization block of the GABAergic neuron in the case of epileptogenic mutations. Both these effects can lead to pyramidal neuron hyperexcitability, inducing in the migraine condition depolarization block of both the GABAergic and the pyramidal neuron. Overall, our findings suggest different mechanisms of network hyperexcitability for migraine and epileptogenic NaV1.1 mutations, implying that the modifications of firing frequency may not be the only relevant pathological mechanism. 相似文献
32.
Joannie Lemaire Myriam Mireault Catherine Jumarie 《Journal of biochemical and molecular toxicology》2020,34(3)
Cadmium (Cd) is a toxic metal that enters the food chain. Following oral ingestion, the intestinal epithelium represents an effective protective barrier against Cd toxicity, but it is also a target tissue that may accumulate and trap high levels of the ingested metal. Using human enterocytic‐like Caco‐2 cells, we have previously shown that Cd may induce a concentration and time‐dependent increase in 3‐(4,5‐dimethyl‐2‐thiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay (MTT)‐reducing activity in differentiated cultures with correlation to ERK1/2 activation. The present study shows that (a) Zn prevents the Cd‐induced hormesis effect on MTT reduction in a concentration‐dependent manner, without inhibiting Cd‐induced ERK1/2 activation; (b) Zn also induces similar hormetic stimulation of MTT‐reducing activity but without ERK1/2 activation. The effect of both metals was sensitive to inhibitors of translation during protein synthesis. There is evidence for the involvement of reactive oxygen species (ROS) in Cd‐induced ERK1/2 activation. In contrast, the Zn effect on the MTT‐reducing activity would not be triggered by ROS but it would be sensitive to the redox state of the cell. Steps downstream ERK1/2 activation by Cd does not involve eIF4E which is rather downregulated by Cd. In conclusion, Cd and Zn both can modify translation processes during protein synthesis via different signaling cascades with crosstalk, and cross‐inhibition may occur. This phenomenon is observed over a small range of metal concentrations and is characterized by a hormesis‐like response. Considering that the hormetic effect on dehydrogenase activity could reflect an adaptive response to the metals whether cross‐inhibition is beneficial is an open question. 相似文献
33.
Bursting is one of the fundamental rhythms that excitable cells can generate either in response to incoming stimuli or intrinsically. It has been a topic of intense research in computational biology for several decades. The classification of bursting oscillations in excitable systems has been the subject of active research since the early 1980s and is still ongoing. As a by-product, it establishes analytical and numerical foundations for studying complex temporal behaviors in multiple timescale models of cellular activity. In this review, we first present the seminal works of Rinzel and Izhikevich in classifying bursting patterns of excitable systems. We recall a complementary mathematical classification approach by Bertram and colleagues, and then by Golubitsky and colleagues, which, together with the Rinzel-Izhikevich proposals, provide the state-of-the-art foundations to these classifications. Beyond classical approaches, we review a recent bursting example that falls outside the previous classification systems. Generalizing this example leads us to propose an extended classification, which requires the analysis of both fast and slow subsystems of an underlying slow-fast model and allows the dissection of a larger class of bursters. Namely, we provide a general framework for bursting systems with both subthreshold and superthreshold oscillations. A new class of bursters with at least 2 slow variables is then added, which we denote folded-node bursters, to convey the idea that the bursts are initiated or annihilated via a folded-node singularity. Key to this mechanism are so-called canard or duck orbits, organizing the underpinning excitability structure. We describe the 2 main families of folded-node bursters, depending upon the phase (active/spiking or silent/nonspiking) of the bursting cycle during which folded-node dynamics occurs. We classify both families and give examples of minimal systems displaying these novel bursting patterns. Finally, we provide a biophysical example by reinterpreting a generic conductance-based episodic burster as a folded-node burster, showing that the associated framework can explain its subthreshold oscillations over a larger parameter region than the fast subsystem approach. 相似文献
34.
Mitochondrial DNA of Kinetoplastea is composed of different chromosomes, the maxicircle (bearing 'regular' genes) and numerous minicircles (specifying guide RNAs involved in RNA editing). In trypanosomes [Kinetoplastea], DNA circles are compacted into a single dense body, the kinetoplast. This report addresses the question whether multi-chromosome mitochondrial genomes and compacted chromosome organization are restricted to Kinetoplastea or rather occur throughout Euglenozoa, i.e., Kinetoplastea, Euglenida and Diplonemea. To this end, we investigated the diplonemid Rhynchopus euleeides and the euglenids Petalomonas cantuscygni, Peranema trichophorum and Entosiphon sulcatum, using light and electron microscopy and molecular techniques. Our findings together with previously published data show that multi-chromosome mitochondrial genomes prevail across Euglenozoa, while kinetoplast-like mtDNA packaging is confined to trypanosomes. 相似文献
35.
Desroches BR Zhang P Choi BR King ME Maldonado AE Li W Rago A Liu G Nath N Hartmann KM Yang B Koren G Morgan JR Mende U 《American journal of physiology. Heart and circulatory physiology》2012,302(10):H2031-H2042
To bridge the gap between two-dimensional cell culture and tissue, various three-dimensional (3-D) cell culture approaches have been developed for the investigation of cardiac myocytes (CMs) and cardiac fibroblasts (CFs). However, several limitations still exist. This study was designed to develop a cardiac 3-D culture model with a scaffold-free technology that can easily and inexpensively generate large numbers of microtissues with cellular distribution and functional behavior similar to cardiac tissue. Using micromolded nonadhesive agarose hydrogels containing 822 concave recesses (800 μm deep × 400 μm wide), we demonstrated that neonatal rat ventricular CMs and CFs alone or in combination self-assembled into viable (Live/Dead stain) spherical-shaped microtissues. Importantly, when seeded simultaneously or sequentially, CMs and CFs self-sorted to be interspersed, reminiscent of their myocardial distribution, as shown by cell type-specific CellTracker or antibody labeling. Microelectrode recordings and optical mapping revealed characteristic triangular action potentials (APs) with a resting membrane potential of -66 ± 7 mV (n = 4) in spontaneously contracting CM microtissues. Under pacing, optically mapped AP duration at 90% repolarization and conduction velocity were 100 ± 30 ms and 18.0 ± 1.9 cm/s, respectively (n = 5 each). The presence of CFs led to a twofold AP prolongation in heterogenous microtissues (CM-to-CF ratio of 1:1). Importantly, Ba(2+)-sensitive inward rectifier K(+) currents and Ca(2+)-handling proteins, including sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a, were detected in CM-containing microtissues. Furthermore, cell type-specific adenoviral gene transfer was achieved, with no impact on microtissue formation or cell viability. In conclusion, we developed a novel scaffold-free cardiac 3-D culture model with several advancements for the investigation of CM and CF function and cross-regulation. 相似文献
36.
In Bruschidius atrolineatus (Pic), an increase in larval density inside the seed led to a reduction in the survival rate during post-embryonic development, with only a limited decrease in the weight of adults. A high larval density increased the proportion of adults in reproductive diapause under certain thermoperiodic conditions. Under other conditions that already promote the emergence of a high proportion of diapausing beetles, an increase in larval density had no effect on diapause.There was no correlation between the larval developmental time and the weights of adults in a strain with a very low incidence of diapause. However, such a correlation was observed when both sexuallyactive and diapausing beetles emerged. This correlation was explained by the longer developmental times and lower weights of diapausing beetles.
Résumé Chez Bruchidius atrolineatus, l'accroissement de la densité larvaire à l'intérieur de la graine entraîne une augmentation de la mortalité alors que la réduction de poids des individus à l'émergence est relativement limitée. L'accroissement de la densité larvaire provoque une augmentation du taux d'adultes en diapause reproductrice, dans certaines conditions thermopériodiques. Dans d'autres conditions, permenttant l'émergence d'un fort taux d'adultes diapausants, l'effet de la densité larvaire est nul. Lorsque l'on analyse l'effet de la densité chez les individus d'une souche ne présentant pas de phénomène de diapause, il n'y a pas de corrélation entre la durée de développement et le poids des adultes. Par contre, lorsqu'il y a émergence d'adultes sexuellement actifs et diapausants, il existe une corrélation entre la durée de développement et le poids des adultes émergeants. Cette corrélation est due au fait que les adultes diapausants, qui présentent les durées de développement les plus longues, sont ceux qui ont les poids les plus faibles.相似文献
37.
Clint A. James Patrick DeRoy Martin Duplessis Paul J. Edwards Teddy Halmos Joannie Minville Louis Morency Sébastien Morin Bruno Simoneau Martin Tremblay Richard Bethell Michael Cordingley Jianmin Duan Louie Lamorte Alex Pelletier Daniel Rajotte Patrick Salois Sonia Tremblay Claudio F. Sturino 《Bioorganic & medicinal chemistry letters》2013,23(9):2781-2786
38.
Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was applied to investigate the interaction of bovine serum albumin (BSA) and fibrinogen with a biomedical-grade 316LVM stainless steel surface, in terms of the adsorption thermodynamics and adsorption-induced secondary structure changes of the proteins. Highly negative apparent Gibbs energy of adsorption values revealed a spontaneous adsorption of both proteins onto the surface, accompanied by significant changes in their secondary structure. It was determined that, at saturated surface coverages, lateral interactions between the adsorbed BSA molecules induced rather extensive secondary structure changes. Fibrinogen's two coiled coils appeared to undergo negligible secondary structure changes upon adsorption of the protein, while large structural rearrangements of the protein's globular domains occurred upon adsorption. The secondary structure of adsorbed fibrinogen was not influenced by lateral interactions between the adsorbed fibrinogen molecules. PM-IRRAS was deemed to be viable for investigating protein adsorption and for obtaining information on adsorption-induced changes in their secondary structures. 相似文献
39.
Recent epidemiological studies have confirmed the existence of a correlation between aluminum level in low-silica drinking water and prevalence of Alzheimer's disease. Also, oral aluminum-based phosphate binders and antacids may induce acute aluminum toxicity. Whatever the source of the metal ingested, its bioavailability is a function of the chemical forms under which it occurs in the gastrointestinal tract, i.e. of the ligands with which the Al3+ ion may associate. Dietary acids in particular can favor the bioavailability of aluminum in different ways: by increasing its solubility, by complexing it into neutral species, and/or by acting indirectly on its absorption process. Among these, tartaric acid is commonly found in fruits and in industrial foods and drinks, and may therefore be ingested together with environmental or/and therapeutic aluminum. The present work examines its potential influence on aluminum bioavailability. Firstly, Al(III)-tartrate complex formation constants have been determined under physiological conditions (37 degrees C, 0.15 M NaCl). Then these constants have been used to simulate the influence of tartrate on aluminum speciation in different gastrointestinal situations in which phosphate was also taken into account. Under normal conditions of aluminum contamination, tartrate is expected to keep the metal soluble throughout the whole pH range of the small intestine, which is likely to enhance its bioavailability. Even at low concentrations, tartrate also gives rise to two neutral complexes that span over the 1.5-7.5 pH interval, a phenomenon that is aggravated by increased aluminum levels as may result from aluminum hydroxide therapy. The co-occurrence of dietary phosphate reduces the fraction of aluminum neutralized by tartrate under normal conditions, but this effect quickly decreases with increasing aluminum doses. Even the therapeutic use of aluminum phosphate is not expected to be totally safe in the presence of tartaric acid. As plasma simulations show that no aluminum mobilization can be expected from tartrate that could enhance aluminum excretion, avoiding ingestion of tartaric acid during any form of aluminum-based therapy appears advisable. 相似文献
40.
While the involvement of environmental aluminum toxicity in the advent of senile dementias is still debated, acute aluminum toxicity of iatrogenic origin is well documented. So far, the only treatment available against it has been desferrioxamine (DFO), which induces major side effects. New drugs are thus highly desirable, and possible DFO substitutes have already been considered through various techniques. An important test for such new drugs is to assess their A1-mobilizing capacity in vivo. This can be done by computer-aided speciation provided formation constants for the corresponding A1(III) complexes are known beforehand. The present work reports an investigation of A1(III) complex equilibria with five sequestering ligands including DFO, and predicts the respective capacities of these to mobilize aluminum in vivo under normal and inflammatory conditions. 相似文献