首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5685篇
  免费   529篇
  6214篇
  2022年   38篇
  2021年   82篇
  2020年   41篇
  2019年   72篇
  2018年   70篇
  2017年   74篇
  2016年   112篇
  2015年   181篇
  2014年   206篇
  2013年   267篇
  2012年   353篇
  2011年   386篇
  2010年   226篇
  2009年   178篇
  2008年   311篇
  2007年   328篇
  2006年   283篇
  2005年   302篇
  2004年   285篇
  2003年   270篇
  2002年   229篇
  2001年   166篇
  2000年   127篇
  1999年   121篇
  1998年   74篇
  1997年   54篇
  1996年   50篇
  1995年   45篇
  1994年   50篇
  1993年   53篇
  1992年   84篇
  1991年   79篇
  1990年   83篇
  1989年   91篇
  1988年   63篇
  1987年   75篇
  1986年   65篇
  1985年   53篇
  1984年   57篇
  1983年   42篇
  1982年   37篇
  1981年   38篇
  1980年   41篇
  1979年   47篇
  1978年   28篇
  1977年   33篇
  1976年   33篇
  1974年   33篇
  1973年   22篇
  1971年   26篇
排序方式: 共有6214条查询结果,搜索用时 15 毫秒
91.
The New Zealand long-tailed bat (Chalinolobus tuberculatus) is an endemic species threatened with extinction. Since the arrival of humans, massive deforestation has occurred and invasive mammalian predators were introduced. As a result, C. tuberculatus’ distribution shrank dramatically and became fragmented. To aid the management of the remaining populations, two Evolutionary Significant Units (ESUs) were designated: one on each of New Zealand’s main islands. We utilised mitochondrial sequence data (cytb, 703 bp) and 10 nuclear DNA microsatellite loci to reconstruct the demographic history of this species, to characterise the level of genetic diversity in remaining populations, and to assess the current connectivity between them. Our results indicate that the North Island, with the highest genetic diversity, served as a glacial refuge, with a loss of diversity following the path recolonization to the south of the South Island. However, our data are also consistent with continued, or at least very recent, genetic exchange between colonies across the species distribution. The only exception is the Hanging Rock colony on the east coast of the South Island, which appears to be isolated. Thus, there was no support for the previously designated ESUs. Signatures of past population declines were found in three colonies, the most extreme of which was found in Hanging Rock. Consequently, we recommend that it be genetically rescued via translocation from a donor population. In general, future management priorities should treat Chalinolobus tuberculatus as a single unit, focusing on maintaining connectivity between remaining populations, together with continued roost protection and pest control.  相似文献   
92.
Current MR methods use T2? relaxation time as a surrogate measure of ligament strength. Currently, a multi-echo voxel-wise least squares fit is the gold standard to create T2? maps; however, the post-processing is time-intensive and serves as a stopgap for clinical use. The study objective was to determine if an alternative method could improve post-processing time without sacrificing fidelity of T2? values for eventual translational use in the clinic. Using a 6 echo FLASH sequence, three different methods were used to determine intact posterior cruciate ligament (PCL) median T2? Two of these methods utilized a voxel-wise method to establish T2? maps: (1) a current “gold standard” method using a voxel-wise 6 echo least-squares fit (6LS) and (2) a voxel-wise 2 echo point T2? determination (2MM). The third method used median ligament signal intensity and a single nonlinear least-squares fit (6LSROI) instead of a voxel-wise basis. The resulting median T2? values of the PCL and computational time were compared. The median T2? values were 42% higher using the 2MM compared to the 6LS method (p<0.0001). However, a strong correlation was found for the median T2? values between the 2MM and 6LS methods (R2=0.80). The median T2? values were not significantly different between the 6LS and 6LSROI methods (p=0.519). Using the 2MM (which provides a regional map) and the 6LSROI (which efficiently provides the median T2? value) methods in tandem would take only minutes of post-processing computational time compared to the 6LS method (~540 min), and hence would facilitate clinical application of T2? maps to predict ligament structural properties as a patient outcome measure.  相似文献   
93.
VEGF-induced vascular permeability is mediated by FAK   总被引:1,自引:0,他引:1  
Endothelial cells (ECs) form cell-cell adhesive junctional structures maintaining vascular integrity. This barrier is dynamically regulated by vascular endothelial growth factor (VEGF) receptor signaling. We created an inducible knockin mouse model to study the contribution of the integrin-associated focal adhesion tyrosine kinase (FAK) signaling on vascular function. Here we show that genetic or pharmacological FAK inhibition in ECs prevents VEGF-stimulated permeability downstream of VEGF receptor or Src tyrosine kinase activation in vivo. VEGF promotes tension-independent FAK activation, rapid FAK localization to cell-cell junctions, binding of the FAK FERM domain to the vascular endothelial cadherin (VE-cadherin) cytoplasmic tail, and direct FAK phosphorylation of β-catenin at tyrosine-142 (Y142) facilitating VE-cadherin-β-catenin dissociation and EC junctional breakdown. Kinase inhibited FAK is in a closed conformation that prevents VE-cadherin association and limits VEGF-stimulated β-catenin Y142 phosphorylation. Our studies establish a role for FAK as an essential signaling switch within ECs regulating adherens junction dynamics.  相似文献   
94.
The effect of changing environmental conditions on the morphology of the yeast Kluyveromyces marxianus var. marxianus NRRLy2415 was investigated in batch and continuous culture, using a previously developed computer-aided image analysis protocol [O'Shea and Walsh (1996) Biotechnol Bioeng 51: 679–690]. The morphology of the organism is primarily controlled by the specific growth rate, μ. This finding was contrary to a previous investigation [Walker and O'Neill (1990) J Chem Tech Biotechnol 49: 75–89]. When the organism is cultured in batch with excess oxygen, μ can approach the maximum specific growth rate, μm, and the primary morphology of the culture is yeast-like. However, if the organism is cultured in a chemostat, thereby controlling the growth rate, the morphology reverts to a pseudohyphal form. This response is thought to be an adaptation by the organism to its environment, whereby it assumes a foraging form under adverse environmental conditions. The use of computer-aided image analysis made possible the discrimination of subtle morphological differences between samples and the determination of the relationship between morphology and growth rate. Received: 12 April 1999 / Accepted: 10 October 1999  相似文献   
95.
A segmental tibial defect model in a large animal can provide a basis for testing materials and techniques for use in nonunions and severe trauma. This study reports the rationale behind establishing such a model and its design and conclusions. After ethics approval of the study, aged ewes (older than 5 y; n = 12) were enrolled. A 5-cm mid diaphyseal osteoperiosteal defect was made in the left tibia and was stabilized by using an 8-mm stainless-steel cross-locked intramedullary nail. Sheep were euthanized at 12 wk after surgery and evaluated by using radiography, microCT, and soft-tissue histology techniques. Radiology confirmed a lack of hard tissue callus bridging across the defect. Volumetric analysis based on microCT showed bone growth across the 16.5-cm3 defect of 1.82 ± 0.94 cm3. Histologic sections of the bridging tissues revealed callus originating from both the periosteal and endosteal surfaces, with fibrous tissue completing the bridging in all instances. Immunohistochemistry was used to evaluate the quality of the healing response. Clinical, radiographic, and histologic union was not achieved by 12 wk. This model may be effective for the investigation of surgical techniques and healing adjuncts for nonunion cases, where severe traumatic injury has led to significant bone loss.Abbreviations: BMP2, bone morphogenic protein 2; CATK, cathepsin K; VEGF, vascular endothelial growth factorThe human tibia is the most frequently broken long bone, often with significant bone loss.4 Segmental tibial defects can occur as a result of large tumor removal, trauma such as motor vehicle accidents, and more recently, blast injuries as seen with the escalating number of global conflicts. Treatment of these large bone and surrounding soft tissue defects is an ongoing, costly, and challenging clinical problem; no surgical technique has currently achieved preeminence.4 The general consensus on factors that affect healing include concomitant disease, age, and degree of trauma.5 When the first 2 factors, which are patient-related, are removed from the equation, healing is influenced by the size, anatomic location, and soft-tissue coverage of the defect. The ability to study these situations in a well-controlled, robust, and reproducible preclinical model would be advantageous to help establish effective surgical techniques and evaluate implants and materials.A literature review revealed that many ovine models for bone defects have been used, but all have limitations6,12,14,15,20,21,24,25,27,31,37,39,40 (Figure 1). Variations in protocols, such as age of the animals, size of the defect, and the bone and stabilization techniques used, limit meaningful comparison between studies.33,34 Although some studies have investigated material performance in the healing of defects, they did not rigorously quantify control defects,17,20 and others used no controls at all.39 There is often no explanation regarding the use of a particular defect size, leading to the question of whether the defect size was critical.24 The choice of bone used has been also varied; the femur,15 tibia,37 and metatarsus40 have all been studied. A noncritical-size defect implies that healing would eventually occur without the presence of any graft materials. One study,12 for example, used a 3-cm defect at an average of 1.8 times the diameter of the tibias in question and found that empty controls achieved as much as 26% of the stiffness of an intact tibia after 12 wk. Stabilization methods include plating,21,40 external fixtures,20 intramedullary nails,6,16 and a combination of intramedullary nails and plating.37Open in a separate windowFigure 1.A limited summary of the many studies where a segmental tibial has been used with their references.The criteria used in the present study for a critical-size segmental tibial defect model were based on the following factors. The ovine tibia closely resembles that of the human tibia in terms of size, shape, and physical properties and is commonly used when studying human orthopedic diseases.26,34 Intramedullary nailing has become the most commonly used method of tibial fracture fixation in human orthopedic surgery.8,22 An 8-mm intramedullary nail is commonly used in the treatment of human fractures, further confirming the size similarity between the ovine and human tibiae.19The aim of this study was to establish and characterize a preclinical ovine 5-cm osteoperiosteal critical-size tibial segmental defect model in mature sheep. The endpoints included those commonly used clinically, such as radiography and microCT. Histology to investigate the degree of healing and immunohistochemistry to characterize the healing process were included to complete the evaluation process.  相似文献   
96.
Summary Dissociated normal mammary epithelial cells from prelactating mice were plated on different substrates in various medium-serum-hormone combinations to find conditions that would permit maintenance of morphological differentiation. Cells cultured on floating collagen membranes in medium containing insulin, hydrocortisone and prolactin maintain differentiation through 1 month in culture. The surface cells form a continuous epithelial pavement. Some epithelial cells below the surface layer rearrange themselves to form alveolus-like structures. Cells at both sites display surface polarization; microvilli and tight junctions are present at their medium-facing or luminal surface and a basal lamina separates the epithelial components from the gel and stromal cells. Occasinal myoepithelial cells, characterized by myofilaments and plasmalemmal vesicles, are identified at the basal surface of the secretory epithelium. In contrast, cells cultured on plastic, glass or collagen gels attached to Petri dishes form a confluent epithelial sheet showing surface polarization, but lose secretory and myoepithelial specializations. If these dedifferentiated cells are subsequently maintained on floating collagen membranes, they redifferentiate. There is little DNA synthesis in cells on collagen gels, in contrast to Petri-dish controls. Protein synthesis in cells on floating collagen membranes increases over T0 values and remains constant through 7 days in culture whereas it decreases on attached gels; however, if the gels are freed to float, protein synthesis increases sharply and parallels that seen on floating membranes. The work was supported by USPHS Grants CA-05388 and CA-05045 from the National Cancer Institute, DHEW.  相似文献   
97.
Staphylococcus aureus is an important cause of sepsis in both community and hospital settings, a major risk factor for which is nasal carriage of the bacterium. Eradication of carriage by topical antibiotics reduces sepsis rates in high-risk individuals, an important strategy for the reduction of nosocomial infection in targeted patient populations. Understanding the mechanisms by which S. aureus adheres to nasal epithelial cells in vivo may lead to alternative methods of decolonization that do not rely on sustained antimicrobial susceptibility. Here, we demonstrate for the first time that the S. aureus surface-expressed protein, clumping factor B (ClfB), promotes adherence to immobilized epidermal cytokeratins in vitro . By expressing a range of S. aureus adhesins on the surface of the heterologous host Lactococcus lactis , we demonstrated that adherence to epidermal cytokeratins was conferred by ClfB. Adherence of wild-type S. aureus was inhibited by recombinant ClfB protein or anti-ClfB antibodies, and S. aureus mutants defective in ClfB adhered poorly to epidermal cytokeratins. Expression of ClfB promoted adherence of L. lactis to human desquamated nasal epithelial cells, and a mutant of S. aureus defective in ClfB had reduced adherence compared with wild type. ClfB also promoted adherence of L. lactis cells to a human keratinocyte cell line. Cytokeratin 10 molecules were shown by flow cytometry to be exposed on the surface of both desquamated nasal epithelial cells and keratinocytes. Cytokeratin 10 was also detected on the surface of desquamated human nasal cells using immunofluorescence, and recombinant ClfB protein was shown to bind to cytokeratin K10 extracted from these cells. We also showed that ClfB is transcribed by S. aureus in the human nares. We propose that ClfB is a major determinant in S. aureus nasal colonization.  相似文献   
98.
A new imaging device, termed a "cryomacroscope", is presented in this report. This device is designed to assist in exploring thermal and mechanical effects associated with large-scale vitrification and crystallization, with the current setup aimed at the range of 50 μm to 2 cm. The cryomacroscope is not intended as a substitute for the cryomicroscope, but as a complementary tool for the cryobiologist. A combination of cryomacroscopy and cryomicroscopy is suggested as a basis for multi-scale cryobiology studies. This report presents initial results on vitrification, crystallization, and fracture formation in the cryoprotectant cocktails DP6 and VS55. These results show some inconsistency in the tendency to form crystals, based on critical cooling and rewarming rates measured by means of a differential scanning calorimetric device (DSC) in parallel studies. This research is in its early stages, and comparative studies on biological materials are currently underway. Part II of this report (the companion paper) presents results for fracture formation in the cryoprotectant and discusses the mechanical stresses which promote these fractures. In conjunction with these reports, additional photos of cryomacroscopy of vitrification, crystallization, and fracture formation are available at http://www.me.cmu.edu/faculty1/rabin/CryomacroscopyImages01.htm.  相似文献   
99.
N-Glycosylation of eukaryotic membrane proteins is a co-translational event that occurs in the lumen of the endoplasmic reticulum (ER). This process is catalyzed by a membrane-associated oligosaccharyl transferase (OST) complex that transfers a preformed oligosaccharide (Glc3Man9GlcNAc2-) to an asparagine (Asn) side-chain acceptor located within the sequon (-Asn-X-Ser/Thr-). Scanning N-glycosylation mutagenesis experiments, where novel acceptor sites are introduced at unique sites within membrane proteins, have shown that the acceptor sites must be located a minimum distance (12–14 amino acids) away from the luminal membrane surface of the ER in order to be efficiently N-glycosylated. Scanning N-glycosylation mutagenesis can therefore be used to determine membrane protein topology and it can also serve as a molecular ruler to define the ends of transmembrane (TM) segments. Furthermore, since N-glycosylation is a co-translational event, N-glycosylation mutagenesis can be used to identify folding intermediates in membrane proteins that may expose segments to the ER lumen transiently during biosynthesis.  相似文献   
100.
The synthesis and antibacterial activity of a series of nocathiacin I derivatives (4-20) containing polar water solubilizing groups is described. Thiol-Michael adducts containing acidic polar groups have reduced antibacterial activity whereas those with basic polar groups have retained very good antibacterial activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号