首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2757篇
  免费   247篇
  3004篇
  2023年   10篇
  2022年   24篇
  2021年   52篇
  2020年   27篇
  2019年   42篇
  2018年   50篇
  2017年   42篇
  2016年   62篇
  2015年   114篇
  2014年   122篇
  2013年   172篇
  2012年   225篇
  2011年   219篇
  2010年   132篇
  2009年   100篇
  2008年   197篇
  2007年   210篇
  2006年   178篇
  2005年   178篇
  2004年   158篇
  2003年   148篇
  2002年   133篇
  2001年   28篇
  2000年   17篇
  1999年   32篇
  1998年   40篇
  1997年   29篇
  1996年   26篇
  1995年   24篇
  1994年   24篇
  1993年   23篇
  1992年   9篇
  1991年   13篇
  1990年   12篇
  1989年   8篇
  1987年   11篇
  1986年   5篇
  1985年   8篇
  1984年   8篇
  1983年   6篇
  1982年   14篇
  1981年   10篇
  1980年   8篇
  1979年   4篇
  1978年   7篇
  1977年   8篇
  1974年   8篇
  1973年   5篇
  1971年   3篇
  1962年   3篇
排序方式: 共有3004条查询结果,搜索用时 0 毫秒
91.
P450 monooxygenases are able to catalyze the highly regio‐ and stereoselective oxidations of many organic molecules. However, the scale‐up of such bio‐oxidations remains challenging due to the often‐low activity, level of expression and stability of P450 biocatalysts. Despite these challenges they are increasingly desirable as recombinant biocatalysts, particularly for the production of drug metabolites. Diclofenac is a widely used anti‐inflammatory drug that is persistent in the environment along with the 4'‐ and 5‐hydroxy metabolites. Here we have used the self‐sufficient P450 RhF (CYP116B2) from Rhodococcus sp. in a whole cell system to reproducibly catalyze the highly regioselective oxidation of diclofenac to 5‐hydroxydiclofenac. The product is a human metabolite and as such is an important standard for environmental and toxicological analysis. Furthermore, access to significant quantities of 5‐hydroxydiclofenac has allowed us to demonstrate further oxidative degradation to the toxic quinoneimine product. Our studies demonstrate the potential for gram‐scale production of human drug metabolites through recombinant whole cell biocatalysis.  相似文献   
92.
In tobacco, the heavy metal P1B‐ATPases HMA4.1 and HMA4.2 function in root‐to‐shoot zinc and cadmium transport. We present greenhouse and field data that dissect the possibilities to impact the two homeologous genes in order to define the best strategy for leaf cadmium reduction. In a first step, both genes were silenced using an RNAi approach leading to >90% reduction of leaf cadmium content. To modulate HMA4 function more precisely, mutant HMA4.1 and HMA4.2 alleles of a Targeting Induced Local Lesions IN Genomes (TILLING) population were combined. As observed with RNAi plants, knockout of both homeologs decreased cadmium root‐to‐shoot transfer by >90%. Analysis of plants with segregating null and wild‐type alleles of both homeologs showed that one functional HMA4 allele is sufficient to maintain wild‐type cadmium levels. Plant development was affected in HMA4 RNAi and double knockout plants that included retarded growth, necrotic lesions, altered leaf morphology and increased water content. The combination of complete functional loss (nonsense mutation) in one homeologous HMA4 gene and the functional reduction in the other HMA4 gene (missense mutation) is proposed as strategy to limit cadmium leaf accumulation without developmental effects.  相似文献   
93.
The leucine-rich-repeat receptor serine/threonine kinase, BRI1, is a cell-surface receptor for brassinosteroids (BRs), the steroid hormones of plants, yet its activation mechanism is unknown. Here, we report a unique autoregulatory mechanism of BRI1 activation. Removal of BRI1's C terminus leads to a hypersensitive receptor, indicated by suppression of dwarfism of BR-deficient and BR-perception mutants and by enhanced BR signaling as a result of elevated phosphorylation of BRI1. Several sites in the C-terminal region can be phosphorylated in vitro, and transgenic Arabidopsis expressing BRI1 mutated at these sites demonstrates an essential role of phosphorylation in BRI1 activation. BRI1 is a ligand-independent homo-oligomer, as evidenced by the transphosphorylation of BRI1 kinase in vitro, the dominant-negative effect of a kinase-inactive BRI1 in transgenic Arabidopsis, and coimmunoprecipitation experiments. Our results support a BRI1-activation model that involves inhibition of kinase activity by its C-terminal domain, which is relieved upon ligand binding to the extracellular domain.  相似文献   
94.
95.
FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) are two genes that, unless plants are vernalized, greatly delay flowering time in Arabidopsis thaliana. Natural loss-of-function mutations in FRI cause the early flowering growth habits of many A. thaliana accessions. To quantify the variation among wild accessions due to FRI, and to identify additional genetic loci in wild accessions that influence flowering time, we surveyed the flowering times of 145 accessions in long-day photoperiods, with and without a 30-day vernalization treatment, and genotyped them for two common natural lesions in FRI. FRI is disrupted in at least 84 of the accessions, accounting for only approximately 40% of the flowering-time variation in long days. During efforts to dissect the causes for variation that are independent of known dysfunctional FRI alleles, we found new loss-of-function alleles in FLC, as well as late-flowering alleles that do not map to FRI or FLC. An FLC nonsense mutation was found in the early flowering Van-0 accession, which has otherwise functional FRI. In contrast, Lz-0 flowers late because of high levels of FLC expression, even though it has a deletion in FRI. Finally, eXtreme array mapping identified genomic regions linked to the vernalization-independent, late-flowering habit of Bur-0, which has an alternatively spliced FLC allele that behaves as a null allele.  相似文献   
96.
97.
A series of N-fluoroalkyl-8-(6-methoxy-2-methylpyridin-3-yl)-2,7-dimethyl-N-alkylpyrazolo[1,5-a][1,3,5]triazin-4-amines were prepared and evaluated as potential CRF1R PET imaging agents. Optimization of their CRF1R binding potencies and octanol-phosphate buffer phase distribution coefficients resulted in discovery of analog 7e (IC50 = 6.5 nM, log D = 3.5).  相似文献   
98.
The Tat system transports folded proteins across bacterial plasma and plant thylakoid membranes. To date, three key Tat subunits have been identified and mechanistic studies indicate the presence of two types of complex: a TatBC-containing substrate-binding unit and a separate TatA complex. Here, we used blue-native gel electrophoresis and affinity purification to study the nature of these complexes in Escherichia coli. Analysis of solubilized membrane shows that the bulk of TatB and essentially all of the TatC is found in a single 370kDa TatABC complex. TatABC was purified to homogeneity using an affinity tag on TatC and this complex runs apparently as an identical band. We conclude that this is the primary core complex, predicted to contain six or seven copies of TatBC together with a similar number of TatA subunits. However, the data indicate the presence of an additional form of Tat complex containing TatA and TatB, but not TatC; we speculate that this may be an assembly or disassembly intermediate of the translocator. The vast majority of TatA is found in separate complexes that migrate in blue-native gels as a striking ladder of bands with sizes ranging from under 100 kDa to over 500 kDa. Further analysis shows that the bands differ by an average of 34 kDa, indicating that TatA complexes are built largely, but possibly not exclusively, from modules of three or four TatA molecules. The range and nature of these complexes are similar in a TatC mutant that is totally inactive, indicating that the ladder of bands does not stem from ongoing translocation activity, and we show that purified TatA can self-assemble in vitro to form similar complexes. This spectrum of TatA complexes may provide the flexibility required to generate a translocon capable of transporting substrates of varying sizes across the plasma membrane in a folded state.  相似文献   
99.
Signaling from the activin/transforming growth factor beta (TGFbeta) family of cytokines is a tightly regulated process. Disregulation of TGFbeta signaling is often the underlying basis for various cancers, tumor metastasis, inflammatory and autoimmune diseases. In this study, we identify the protein G-coupled receptor kinase 2 (GRK2), a kinase involved in the desensitization of G protein-coupled receptors (GPCR), as a downstream target and regulator of the TGFbeta-signaling cascade. TGFbeta-induced expression of GRK2 acts in a negative feedback loop to control TGFbeta biological responses. Upon TGFbeta stimulation, GRK2 associates with the receptor-regulated Smads (R-Smads) through their MH1 and MH2 domains and phosphorylates their linker region. GRK2 phosphorylation of the R-Smads inhibits their carboxyl-terminal, activating phosphorylation by the type I receptor kinase, thus preventing nuclear translocation of the Smad complex, leading to the inhibition of TGFbeta-mediated target gene expression, cell growth inhibition and apoptosis. Furthermore, we demonstrate that GRK2 antagonizes TGFbeta-induced target gene expression and apoptosis ex vivo in primary hepatocytes, establishing a new role for GRK2 in modulating single-transmembrane serine/threonine kinase receptor-mediated signal transduction.  相似文献   
100.
Savage J  Vila B 《Social biology》2003,50(1-2):77-101
The paper extends previous research published by Cohen, Machalek, Vila, and others on the evolutionary-ecological paradigm for understanding criminal behavior. After reviewing literature related to human ecology and crime, the paper focuses on elements relevant to human ecology-biology, development, and ecological factors--and their role in criminal behavior. Major emphasis is placed on the linkages between individual factors and macro-level crime using chronic offending as a case in point. The principles of evolutionary ecology then are used to discuss counterstrategies to crime, and the prospects for protection/avoidance, deterrent, and nurturant strategies in light of evidence on chronic offending.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号