首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2708篇
  免费   236篇
  2944篇
  2023年   10篇
  2022年   24篇
  2021年   48篇
  2020年   26篇
  2019年   42篇
  2018年   47篇
  2017年   41篇
  2016年   60篇
  2015年   108篇
  2014年   118篇
  2013年   169篇
  2012年   221篇
  2011年   214篇
  2010年   125篇
  2009年   98篇
  2008年   199篇
  2007年   208篇
  2006年   175篇
  2005年   175篇
  2004年   156篇
  2003年   145篇
  2002年   129篇
  2001年   28篇
  2000年   17篇
  1999年   32篇
  1998年   40篇
  1997年   29篇
  1996年   25篇
  1995年   24篇
  1994年   24篇
  1993年   23篇
  1992年   9篇
  1991年   13篇
  1990年   11篇
  1989年   8篇
  1987年   11篇
  1986年   5篇
  1985年   8篇
  1984年   8篇
  1983年   6篇
  1982年   14篇
  1981年   10篇
  1980年   8篇
  1979年   4篇
  1978年   7篇
  1977年   8篇
  1974年   7篇
  1973年   5篇
  1971年   3篇
  1962年   3篇
排序方式: 共有2944条查询结果,搜索用时 15 毫秒
961.
We describe a female subject (DGAP100) with a 46,X,t(X;5)(p11.3;q35.3)inv(5)(q35.3q35.1)dn, severe psychomotor retardation with hypotonia, global postnatal growth restriction, microcephaly, globally reduced cerebral volume, seizures, facial dysmorphia and cleft palate. Fluorescence in situ hybridization and whole-genome sequencing demonstrated that the X chromosome breakpoint disrupts KDM6A in the second intron. No genes were directly disrupted on chromosome 5. KDM6A is a histone 3 lysine 27 demethylase and a histone 3 lysine 4 methyltransferase. Expression of KDM6A is significantly reduced in DGAP100 lymphoblastoid cells compared to control samples. We identified nine additional cases with neurodevelopmental delay and various other features consistent with the DGAP100 phenotype with copy number variation encompassing KDM6A from microarray databases. We evaluated haploinsufficiency of kdm6a in a zebrafish model. kdm6a is expressed in the pharyngeal arches and ethmoid plate of the developing zebrafish, while a kdm6a morpholino knockdown exhibited craniofacial defects. We conclude KDM6A dosage regulation is associated with severe and diverse structural defects and developmental abnormalities.  相似文献   
962.
Thrombospondin-1 (TSP1) binding to calreticulin (CRT) on the cell surface signals focal adhesion disassembly, leading to the intermediate adhesive phenotype, cell migration, anoikis resistance, and collagen stimulation. Residues Lys 24 and 32 in TSP1 and amino acids 24-26 and 32-34 in CRT have been shown through biochemical and cell-based approaches to be critical for TSP1-CRT binding and signaling. This study investigated the molecular and structural basis for these key TSP1 and CRT residues in TSP1-CRT binding. On the basis of a validated TSP1-CRT complex structure, we adopted steered molecular dynamics simulations to determine the effect of mutation of these key residues on TSP1-CRT binding and validated the simulation results with experimental observations. We further performed 30 ns molecular dynamics simulations for wild-type TSP1, CRT, K24A/K32A mutant TSP1, and mutant CRT (residues 24-26 and 32-34 mutated to Ala) and studied the conformational and structural changes in TSP1 and CRT as the result of mutation of these critical residues. Results showed that mutation of residues 24 and 32 to Ala in TSP1 and of amino acids 24-26 and 32-34 to Ala in CRT results in a shortened β-strand in the binding site, decreased hydrogen bond occupancy for β-strand pairs that are located within or near the binding site, increased conformational flexibility of the binding site, a changed degree of dynamically correlated motion between the residues in the binding site and the other residues in protein, and a changed degree of overall correlated motion between the residues in the protein. These changes could directly contribute to the loss or weakened binding between TSP1 and CRT and the resultant effects on TSP1-CRT binding-induced cellular activities. Results from this study provide a molecular and structural insight into the role of these critical residues of TSP1 and CRT in TSP1-CRT binding.  相似文献   
963.
Zhang Y  Stubbe J 《Biochemistry》2011,50(25):5615-5623
Bacillus subtilis class Ib ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides, providing the building blocks for DNA replication and repair. It is composed of two proteins: α (NrdE) and β (NrdF). β contains the metallo-cofactor, essential for the initiation of the reduction process. The RNR genes are organized within the nrdI-nrdE-nrdF-ymaB operon. Each protein has been cloned, expressed, and purified from Escherichia coli. As isolated, recombinant NrdF (rNrdF) contained a diferric-tyrosyl radical [Fe(III)(2)-Y(?)] cofactor. Alternatively, this cluster could be self-assembled from apo-rNrdF, Fe(II), and O(2). Apo-rNrdF loaded using 4 Mn(II)/β(2), O(2), and reduced NrdI (a flavodoxin) can form a dimanganese(III)-Y(?) [Mn(III)(2)-Y(?)] cofactor. In the presence of rNrdE, ATP, and CDP, Mn(III)(2)-Y(?) and Fe(III)(2)-Y(?) rNrdF generate dCDP at rates of 132 and 10 nmol min(-1) mg(-1), respectively (both normalized for 1 Y(?)/β(2)). To determine the endogenous cofactor of NrdF in B. subtilis, the entire operon was placed behind a Pspank(hy) promoter and integrated into the B. subtilis genome at the amyE site. All four genes were induced in cells grown in Luria-Bertani medium, with levels of NrdE and NrdF elevated 35-fold relative to that of the wild-type strain. NrdE and NrdF were copurified in a 1:1 ratio from this engineered B. subtilis. The visible, EPR, and atomic absorption spectra of the purified NrdENrdF complex (eNrdF) exhibited characteristics of a Mn(III)(2)-Y(?) center with 2 Mn/β(2) and 0.5 Y(?)/β(2) and an activity of 318-363 nmol min(-1) mg(-1) (normalized for 1 Y(?)/β(2)). These data strongly suggest that the B. subtilis class Ib RNR is a Mn(III)(2)-Y(?) enzyme.  相似文献   
964.
Solution- and solid-state NMR studies of GPCRs and their ligands   总被引:1,自引:0,他引:1  
G protein-coupled receptors (GPCRs) represent one of the major targets of new drugs on the market given their roles as key membrane receptors in many cellular signalling pathways. Structure-based drug design has potential to be the most reliable method for novel drug discovery. Unfortunately, GPCR-ligand crystallisation for X-ray diffraction studies is very difficult to achieve. However, solution- and solid-state NMR approaches have been developed and have provided new insights, particularly focussing on the study of protein-ligand interactions which are vital for drug discovery. This review provides an introduction for new investigators of GPCRs/ligand interactions using NMR spectroscopy. The guidelines for choosing a system for efficient isotope labelling of GPCRs and their ligands for NMR studies will be presented, along with an overview of the different sample environments suitable for generation of high resolution structural information from NMR spectra.  相似文献   
965.
Marine heatwaves can lead to rapid changes in entire communities, including in the case of shallow coral reefs the potential overgrowth of algae. Here we tested experimentally the differential thermal tolerance between algae and coral species from the Red Sea through the measurement of thermal performance curves and the assessment of thermal limits. Differences across functional groups (algae vs. corals) were apparent for two key thermal performance metrics. First, two reef‐associated algae species (Halimeda tuna and Turbinaria ornata) had higher lethal thermal limits than two coral species (Pocillopora verrucosa and Stylophora pistillata) conferring those species of algae with a clear advantage during heatwaves by surpassing the thermal threshold of coral survival. Second, the coral species had generally greater deactivation energies for net and gross primary production rates compared to the algae species, indicating greater thermal sensitivity in corals once the optimum temperature is exceeded. Our field surveys in the Red Sea reefs before and after the marine heatwave of 2015 show a change in benthic cover mainly in the southern reefs, where there was a decrease in coral cover and a concomitant increase in algae abundance, mainly turf algae. Our laboratory and field observations indicate that a proliferation of algae might be expected on Red Sea coral reefs with future ocean warming.  相似文献   
966.
Earth's biodiversity is undergoing mass extinction due to anthropogenic compounding of environmental, demographic and genetic stresses. These different stresses can trap populations within a reinforcing feedback loop known as the extinction vortex, in which synergistic pressures build upon one another through time, driving down population viability. Sexual selection, the widespread evolutionary force arising from competition, choice and reproductive variance within animal mating patterns could have vital consequences for population viability and the extinction vortex: (a) if sexual selection reinforces natural selection to fix ‘good genes’ and purge ‘bad genes’, then mating patterns encouraging competition and choice may help protect populations from extinction; (b) by contrast, if mating patterns create load through evolutionary or ecological conflict, then population viability could be further reduced by sexual selection. We test between these opposing theories using replicate populations of the model insect Tribolium castaneum exposed to over 10 years of experimental evolution under monogamous versus polyandrous mating patterns. After a 95‐generation history of divergence in sexual selection, we compared fitness and extinction of monogamous versus polyandrous populations through an experimental extinction vortex comprising 15 generations of cycling environmental and genetic stresses. Results showed that lineages from monogamous evolutionary backgrounds, with limited opportunities for sexual selection, showed rapid declines in fitness and complete extinction through the vortex. By contrast, fitness of populations from the history of polyandry, with stronger opportunities for sexual selection, declined slowly, with 60% of populations surviving by the study end. The three vortex stresses of (a) nutritional deprivation, (b) thermal stress and (c) genetic bottlenecking had similar impacts on fitness declines and extinction risk, with an overall sigmoid decline in survival through time. We therefore reveal sexual selection as an important force behind lineages facing extinction threats, identifying the relevance of natural mating patterns for conservation management.  相似文献   
967.
968.
969.
970.
In contrast to the RNA viruses, the genome of large DNA viruses such as herpesviruses have been considered to be relatively stable. Intra-specific recombination has been proposed as an important, but underestimated, driving force in herpesvirus evolution. Recently, two distinct field strains of infectious laryngotracheitis virus (ILTV) have been shown to have arisen from independent recombination events between different commercial ILTV vaccines. In this study we sequenced the genomes of additional ILTV strains and also utilized other recently updated complete genome sequences of ILTV to confirm the existence of a number of ILTV recombinants in nature. Multiple recombination events were detected in the unique long and repeat regions of the genome, but not in the unique short region. Most recombinants contained a pair of crossover points between two distinct lineages of ILTV, corresponding to the European origin and the Australian origin vaccine strains of ILTV. These results suggest that there are two distinct genotypic lineages of ILTV and that these commonly recombine in the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号