首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4528篇
  免费   322篇
  国内免费   1篇
  4851篇
  2024年   3篇
  2023年   33篇
  2022年   77篇
  2021年   127篇
  2020年   52篇
  2019年   83篇
  2018年   113篇
  2017年   133篇
  2016年   173篇
  2015年   230篇
  2014年   276篇
  2013年   333篇
  2012年   417篇
  2011年   426篇
  2010年   230篇
  2009年   170篇
  2008年   249篇
  2007年   272篇
  2006年   254篇
  2005年   267篇
  2004年   226篇
  2003年   192篇
  2002年   172篇
  2001年   52篇
  2000年   19篇
  1999年   28篇
  1998年   44篇
  1997年   19篇
  1996年   17篇
  1995年   21篇
  1994年   10篇
  1993年   15篇
  1992年   9篇
  1991年   8篇
  1990年   9篇
  1989年   6篇
  1988年   10篇
  1987年   14篇
  1985年   5篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   7篇
  1980年   4篇
  1977年   5篇
  1976年   6篇
  1974年   3篇
  1973年   3篇
  1968年   2篇
  1967年   2篇
排序方式: 共有4851条查询结果,搜索用时 11 毫秒
91.

Background

Worldwide, finfish fisheries are receiving increasing assessment and regulation, slowly leading to more sustainable exploitation and rebuilding. In their wake, invertebrate fisheries are rapidly expanding with little scientific scrutiny despite increasing socio-economic importance.

Methods and Findings

We provide the first global evaluation of the trends, drivers, and population and ecosystem consequences of invertebrate fisheries based on a global catch database in combination with taxa-specific reviews. We also develop new methodologies to quantify temporal and spatial trends in resource status and fishery development. Since 1950, global invertebrate catches have increased 6-fold with 1.5 times more countries fishing and double the taxa reported. By 2004, 34% of invertebrate fisheries were over-exploited, collapsed, or closed. New fisheries have developed increasingly rapidly, with a decrease of 6 years (3 years) in time to peak from the 1950s to 1990s. Moreover, some fisheries have expanded further and further away from their driving market, encompassing a global fishery by the 1990s. 71% of taxa (53% of catches) are harvested with habitat-destructive gear, and many provide important ecosystem functions including habitat, filtration, and grazing.

Conclusions

Our findings suggest that invertebrate species, which form an important component of the basis of marine food webs, are increasingly exploited with limited stock and ecosystem-impact assessments, and enhanced management attention is needed to avoid negative consequences for ocean ecosystems and human well-being.  相似文献   
92.
Reactive oxygen species (ROS) induce matrix metalloproteinase (MMP) activity that mediates hypertrophy and cardiac remodeling. Adiponectin (APN), an adipokine, modulates cardiac hypertrophy, but it is unknown if APN inhibits ROS-induced cardiomyocyte remodeling. We tested the hypothesis that APN ameliorates ROS-induced cardiomyocyte remodeling and investigated the mechanisms involved. Cultured adult rat ventricular myocytes (ARVM) were pretreated with recombinant APN (30 μg/ml, 18 h) followed by exposure to physiologic concentrations of H(2)O(2) (1-200 μM). ARVM hypertrophy was measured by [(3)H]leucine incorporation and atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) gene expression by RT-PCR. MMP activity was assessed by in-gel zymography. ROS was induced with angiotensin (ANG)-II (3.2 mg·kg(-1)·day(-1) for 14 days) in wild-type (WT) and APN-deficient (APN-KO) mice. Myocardial MMPs, tissue inhibitors of MMPs (TIMPs), p-AMPK, and p-ERK protein expression were determined. APN significantly decreased H(2)O(2)-induced cardiomyocyte hypertrophy by decreasing total protein, protein synthesis, ANF, and BNP expression. H(2)O(2)-induced MMP-9 and MMP-2 activities were also significantly diminished by APN. APN significantly increased p-AMPK in both nonstimulated and H(2)O(2)-treated ARVM. H(2)O(2)-induced p-ERK activity and NF-κB activity were both abrogated by APN pretreatment. ANG II significantly decreased myocardial p-AMPK and increased p-ERK expression in vivo in APN-KO vs. WT mice. ANG II infusion enhanced cardiac fibrosis and MMP-2-to-TIMP-2 and MMP-9-to-TIMP-1 ratios in APN-KO vs. WT mice. Thus APN inhibits ROS-induced cardiomyocyte remodeling by activating AMPK and inhibiting ERK signaling and NF-κB activity. Its effects on ROS and ultimately on MMP expression define the protective role of APN against ROS-induced cardiac remodeling.  相似文献   
93.
94.
Photodynamic therapy (PDT) of cancer is an alternative treatment for tumors resistant to chemo- and radiotherapy. It induces cancer cell death mainly through generation of reactive oxygen species by a laser light-activated photosensitizer. It has been suggested that the p53 tumor suppressor protein sensitizes some human cancer cells to PDT. However, there is still no direct evidence for this. We have demonstrated here for the first time that the photosensitizer protoporphyrin IX (PpIX) binds to p53 and disrupts the interaction between p53 tumor suppressor protein and its negative regulator HDM2 in vitro and in cells. Moreover, HCT116 colon cancer cells exhibited a p53-dependent sensitivity to PpIX in a dose-dependent manner, as was demonstrated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and fluorescence-activated cell sorter (FACS) analysis of cell cycle profiles. We have also observed induction of p53 target pro-apoptotic genes, e.g. puma (p53-up-regulated modulator of apoptosis), and bak in PpIX-treated cells. In addition, p53-independent growth suppression by PpIX was detected in p53-negative cells. PDT treatment (2 J/cm2) of HCT116 cells induced p53-dependent activation of pro-apoptotic gene expression followed by growth suppression and induction of apoptosis.  相似文献   
95.
Chemerin, a chemoattractant ligand for chemokine-like receptor 1 (CMKLR1) is predicted to share similar tertiary structure with antibacterial cathelicidins. Recombinant chemerin has antimicrobial activity. Here we show that endogenous chemerin is abundant in human epidermis, and that inhibition of bacteria growth by exudates from organ cultures of primary human skin keratinocytes is largely chemerin-dependent. Using a panel of overlapping chemerin-derived synthetic peptides, we demonstrate that the antibacterial activity of chemerin is primarily mediated by Val66-Pro85, which causes direct bacterial lysis. Therefore, chemerin is an antimicrobial agent in human skin.  相似文献   
96.
97.
VIP as a trophic factor in the CNS and cancer cells   总被引:5,自引:0,他引:5  
Moody TW  Hill JM  Jensen RT 《Peptides》2003,24(1):163-177
The effects of vasoactive intestinal peptide (VIP) on the proliferation of central nervous system (CNS) and cancer cells were investigated. VIP has important actions during CNS development. During neurogenesis, VIP stimulates the proliferation and differentiation of brain neurons. Addition of VIP to embryonic mouse spinal cord cultures increases neuronal survival and activity dependent neurotrophic factor (ADNF) secretion from astroglial cells. VIP is an integrative regulator of brain growth and development during neurogenesis and embryogenesis. Also, VIP causes increased proliferation of human breast and lung cancer cells in vitro. VIP binds with high affinity to cancer cells, elevates the cAMP and increases gene expression of c-fos, c-jun, c-myc and vascular endothelial cell growth factor. The effects of VIP on cancer cells are reversed by VIPhybrid, a synthetic VPAC(1) receptor antagonist. VIPhyb inhibits the basal growth of lung cancer cells in vitro and tumors in vivo and potentiates the ability of chemotherapeutic drugs to kill cancer cells. Due to the high density of VPAC(1) receptors in cancer cells, VIP has been radiolabeled with 123I, 18F and 99mTc to image tumors. It remains to be determined if radiolabeled VIP analogs will be useful agents for early detection of cancer in patients.  相似文献   
98.
The adhesion of cells to solid supports is described as surface-dependent, being largely determined by the properties of the surface. In this study, ceramic surfaces modified using different organosilanes were tested for proadhesive properties using industrial brewery yeast strains in different physiological states. Eight brewing strains were tested: bottom-fermenting Saccharomyces pastorianus and top-fermenting Saccharomyces cerevisiae. To determine adhesion efficiency light microscopy, scanning electron microscopy and the fluorymetric method were used. Modification of chamotte carriers by 3-(3-anino-2-hydroxy-1-propoxy) propyldimethoxysilane and 3-(N, N-dimethyl-N-2-hydroxyethyl) ammonium propyldimethoxysilane groups increased their biomass load significantly.  相似文献   
99.
In all but the most sterile environments bacteria will reside in fluid being transported through conduits and some of these will attach and grow as biofilms on the conduit walls. The concentration and diversity of bacteria in the fluid at the point of delivery will be a mix of those when it entered the conduit and those that have become entrained into the flow due to seeding from biofilms. Examples include fluids through conduits such as drinking water pipe networks, endotracheal tubes, catheters and ventilation systems. Here we present two probabilistic models to describe changes in the composition of bulk fluid microbial communities as they are transported through a conduit whilst exposed to biofilm communities. The first (discrete) model simulates absolute numbers of individual cells, whereas the other (continuous) model simulates the relative abundance of taxa in the bulk fluid. The discrete model is founded on a birth-death process whereby the community changes one individual at a time and the numbers of cells in the system can vary. The continuous model is a stochastic differential equation derived from the discrete model and can also accommodate changes in the carrying capacity of the bulk fluid. These models provide a novel Lagrangian framework to investigate and predict the dynamics of migrating microbial communities. In this paper we compare the two models, discuss their merits, possible applications and present simulation results in the context of drinking water distribution systems. Our results provide novel insight into the effects of stochastic dynamics on the composition of non-stationary microbial communities that are exposed to biofilms and provides a new avenue for modelling microbial dynamics in systems where fluids are being transported.  相似文献   
100.
According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号