首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11152篇
  免费   1442篇
  国内免费   7篇
  2021年   138篇
  2019年   103篇
  2018年   95篇
  2016年   191篇
  2015年   329篇
  2014年   381篇
  2013年   461篇
  2012年   584篇
  2011年   558篇
  2010年   373篇
  2009年   349篇
  2008年   490篇
  2007年   515篇
  2006年   443篇
  2005年   472篇
  2004年   505篇
  2003年   449篇
  2002年   460篇
  2001年   227篇
  2000年   249篇
  1999年   262篇
  1998年   150篇
  1997年   141篇
  1996年   137篇
  1995年   105篇
  1994年   113篇
  1993年   108篇
  1992年   231篇
  1991年   208篇
  1990年   212篇
  1989年   195篇
  1988年   186篇
  1987年   191篇
  1986年   178篇
  1985年   179篇
  1984年   187篇
  1983年   145篇
  1982年   134篇
  1981年   114篇
  1980年   115篇
  1979年   158篇
  1978年   133篇
  1977年   108篇
  1976年   112篇
  1975年   116篇
  1974年   99篇
  1973年   124篇
  1972年   100篇
  1971年   100篇
  1969年   91篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
71.
The autoradiographic deoxyglucose method was employed to investigate: 1) whether the increased glucose utilization in the subfornical organ (SFO) during administration of angiotensin II (AII) depends on the neural inputs to the SFO; and 2) to investigate whether the activation of the hypothalamo-neurohypophysial system during administration of AII depends on inputs from the SFO. The ventral stalk of the SFO, which contains the majority of efferent and afferent projections of this circumventricular structure, was interrupted with knife cuts three days before the deoxyglucose experiments. Intravenous infusion of AII (2.5 micrograms/min) for 45 min increased glucose utilization in the SFO and neural lobe in the lesioned animals to the same extent as in the sham-operated animals. Drinking, however, was significantly reduced in lesioned animals. These experiments disclose independent parallel mechanisms responsible for activation of the SFO and the hypothalamo-neurohypophysial system by AII.  相似文献   
72.
Peptide hormones are generally synthesized as inactive higher mol. wt precursors. Processing of the prohormone into biologically active peptides by specific proteolytic cleavages occurs most often at pairs of basic amino acids but also at single arginine residues. To study the role of protein secondary structure in this process, we used site-directed mutagenesis to modify the predicted secondary structure around the cleavage sites of human prosomatostatin and monitored the processing of the precursor after introduction of the mutated cDNAs in Neuro2A cells. Amino acid substitutions were introduced that affected the possibility of forming beta-turn structures in the immediate vicinity of the somatostatin-28 (S-28) and somatostatin-14 (S-14) cleavage sites. Infection of Neuro2A cells with a retrovirus carrying a human somatostatin cDNA resulted in the expression of prosomatostatin and its processing into S-28 and S-14, indicating that these cells have the necessary enzymes to process prohormone at both single and paired amino acid residues. Disruption of the different beta-turns had various effects on prosomatostatin processing: substitution of Ala for Pro-5 drastically decreased prosomatostatin processing and replacement of Pro-9 by Ala led to the accumulation of the intermediate maturation product [Arg-2Lys-1]-S-14. In contrast, substitution of Ala for Asn-12, Gly+2 and Cys+3 respectively had only very little effect on the proteolytic processing of prosomatostatin. Our results show that amino acids other than the basic amino acid residues are required to define the cleavage sites for prohormone proteolytic processing and suggest that higher orders of protein structure are involved in substrate recognition by the endoproteases.  相似文献   
73.
74.
The glycogen-bound form of protein phosphatase-1 (PP-1G) was previously purified as a heterodimer composed of a 37-kDa catalytic (C) subunit and a proteolytically sensitive 103-kDa glycogen-binding (G) subunit [Str?hlfors, P., Hiraga, A. & Cohen, P. (1985) Eur. J. Biochem. 149, 295-303]. In this paper we demonstrate by a variety of criteria that the intact G subunit is a 161-kDa protein, and that the 103-kDa species (now termed G') is itself a product of proteolysis. A second phosphorylation site for cAMP-dependent protein kinase (termed site 2) was identified on the G subunit. The site 2 serine was phosphorylated at a comparable rate to site 1, and near stoichiometric phosphorylation could be achieved in the presence and absence of glycogen. Site 2 was dephosphorylated by PP-1 at a slow rate, whereas site 1 was resistant to autodephosphorylation. PP-1G, as well as the proteolytic activity responsible for degradation of the G subunit, remained tightly associated with glycogen-protein particles during washing with a variety of solvents. The PP-1G holoenzyme was released from glycogen-protein particles by dilution, with a dissociation half point corresponding to about 10 nM PP-1G. Binding experiments with purified PP-1G and glycogen indicated a bimolecular process with Kapp values corresponding to about 8 nM glycogen and 4 nM PP-1G. Binding was not significantly affected by increasing ionic strength to 0.5 M or variation of pH from 6 to 8. The results are consistent with a high-affinity glycogen-binding domain on the G subunit, and indicate that a physiological concentrations of phosphatase and glycogen, PP-1G should be almost entirely bound to glycogen.  相似文献   
75.
76.
The glycogen-associated form of protein phosphatase-1 (PP-1G) comprises a 37-kDa catalytic (C) subunit and a 161-kDa glycogen-binding (G) subunit. In the preceding paper in this issue of the journal we showed that the C subunit is released from PP-1G in response to phosphorylation of the G subunit by cAMP-dependent protein kinase. We now show that at 0.15-0.2 M KCl the phosphorylase phosphatase activity of glycogen-bound PP-1G is 5-8 times higher than that of released C subunit or unbound PP-1G, which are strongly inhibited at these ionic strengths. The activity of glycogen-bound PP-1G towards glycogen synthase was about 5-fold higher than that of released C subunit at 0.15M KCl. Studies with glycogen-bound substrates and myosin P-light chain (which does not interact with glycogen) indicated that PP-1G activity is only enhanced compared to free C subunit at near physiological ionic strength and when both PP-1G and substrate are glycogen-associated. The inhibition by increasing ionic strength and enhanced activity upon binding to glycogen reflected changes in K'm, but not Vmax. From the determined specificity constant, k'cat/K'm approximately 4 x 10(6) s-1 M-1, it was calculated that at physiological levels of glycogen-bound PP-1G (200 nM) and phosphorylase (70 microM), dephosphorylation of the latter could occur with a half time of 15 s, sufficient to account for inactivation rates in vivo. The much higher catalytic efficiency of glycogen-bound PP-1G toward the glycogen-metabolising enzymes at physiological ionic strength compared to free C subunit substantiates the role of PP-1G in the regulation of these substrates, and establishes a novel mechanism for selectively regulating their phosphorylation states in response to adrenalin and other factors affecting phosphorylation of the G subunit.  相似文献   
77.
The cancer occurrence in relatives (N = 407) of 40 case probands (who had leukemia and rearrangements at the same chromosomal location as at least one of 23 recognized rare [heritable] autosomal fragile sites [Sutherland and Mattei 1987]) was compared both to cancer occurrence in relatives (N = 390) of 40 control probands (who had leukemia or other hematologic illness but no recognized chromosomal rearrangements) and to cancer incidence in the general population of the United States. Fragile-site carrier status was not determined in case or control probands. No significant excess of cancer in case relatives, compared with either control relatives or to general (SEER) population expectancies, was found. Furthermore, there was neither evidence of cancer at younger ages, when cases were compared with control relatives, nor an excess of cancer at multiple sites. Male relatives of cases did, however, show a small excess of cancer, especially in older age groups. There was a slight, but not statistically significant, excess of lung cancer in case relatives, with this deviation occurring almost exclusively in relatives of probands having rearrangements at 11q23 and having lymphoid leukemia. It is possible that heritable tendency to chromosomal rearrangement--and thus to cancer--is expressed in such a small proportion of family members that cancer excess in these families could not be detected with the numbers of relatives analyzed in this study, although there was no significant evidence for a hereditary predisposition to cancer in the families of probands with leukemia and with chromosomal rearrangements at the same apparent chromosomal location as rare fragile sites.  相似文献   
78.
A cDNA encoding the entire tau subunit of rabbit skeletal muscle phosphorylase kinase was reconstructed and inserted into a plasmid containing the Escherichia coli ptac promoter and a constructed plasmid containing the ptac promoter and bacterial chloramphenicol acetyl transferase (CAT) gene, respectively. A significant phosphorylase kinase activity was found, in the first case. In the second case, a fused protein containing 73 amino acids from the CAT protein was obtained. After renaturation, the CAT-tau subunit protein shows enzymatic activity similar to the HPLC-purified and renatured tau subunit.  相似文献   
79.
Nonrandom structural features in the heparin polymer   总被引:1,自引:0,他引:1  
Computer simulation studies were used to prepare an ensemble of heparin number chains. The polydispersity of these chains was simulated by introducing a specific "fraction of terminators", and it closely resembled the experimentally observed polydispersity of a porcine mucosal, glycosaminoglycan heparin. The same percentage of simulated chains contained antithrombin III (ATIII) binding site sequences as are typically found to contain ATIII binding sites using affinity chromatography. Heparin lyase action was then simulated by using Michaelis-Menten kinetics. In one model, heparin chains were constructed from the random assembly of monosaccharide units using the observed mole percentage of each. After simulated depolymerization, the final oligosaccharides formed were compared to the observed oligosaccharide products. The simulation which assumed a random distribution of monosaccharide units in heparin did not agree with experimental observations. In particular, no ATIII binding site sequences were found in the simulated number chains. The results of this simulation indicate that heparin is not simply a random assembly of monosaccharide units. These results are consistent with the known, ordered biosynthesis of heparin. In a second model, heparin chains were constructed from randomly assembled oligosaccharides at the mole percentage in which each is found in the final product mixture. The action of heparin lyase was then simulated, and the distribution of the oligosaccharide products was measured throughout the simulated time course of the depolymerization reaction. The simulated rate of formation and final concentration of a particular oligosaccharide which contains a portion of heparin's ATIII binding site were similar to those observed experimentally. These results are consistent with the random distribution of ATIII binding sites within glycosaminoglycan heparin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
80.
The catalytic subunit of protein phosphatase-1 (PP1) isolated from rabbit liver had the same electrophoretic mobility as, and yielded peptide maps identical to those of the 33 kDa form of rabbit skeletal muscle PP1. The predicted amino-acid sequences of PP1 obtained from three rabbit liver cDNA clones were identical to that of PP1 alpha from rabbit skeletal muscle. These findings suggest that the distinctive substrate specificities and regulatory properties of hepatic and skeletal muscle type-1 protein phosphatases are not conferred by the catalytic subunits themselves, but by regulatory subunits that are complexed to the catalytic subunits in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号