首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   23篇
  244篇
  2023年   2篇
  2022年   5篇
  2021年   2篇
  2020年   2篇
  2019年   6篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   12篇
  2014年   10篇
  2013年   14篇
  2012年   14篇
  2011年   12篇
  2010年   5篇
  2009年   11篇
  2008年   8篇
  2007年   15篇
  2006年   12篇
  2005年   12篇
  2004年   19篇
  2003年   9篇
  2002年   13篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1977年   4篇
排序方式: 共有244条查询结果,搜索用时 15 毫秒
121.
Degradation or "down-regulation" of protease-activated receptor-1 (PAR1), a G protein-coupled receptor for thrombin, is critical for termination of receptor signaling. Toward understanding the molecular mechanisms by which activated PAR1 is internalized, sorted to lysosomes, and degraded, we investigated whether PAR1 interacted with sorting nexin 1 (SNX1). SNX1 is a membrane-associated protein that functions in lysosomal sorting of the epidermal growth factor receptor. In vitro biochemical binding assays revealed a specific interaction between a glutathione S-transferase fusion of SNX1 and PAR1. In HeLa cells, activated PAR1 colocalized with endogenous SNX1 and coimmunoprecipitated SNX1. SNX1 contains a phox homology domain predicted to bind phosphatidylinositol-3-phosphate and a C-terminal coiled-coil region. To assess SNX1 function, we examined the effects of SNX1 deletion mutants on PAR1 trafficking. Neither the N terminus nor phox homology domain of SNX1 affected PAR1 trafficking. By contrast, overexpression of SNX1 C-terminal domain markedly inhibited agonist-induced degradation of PAR1, whereas internalization remained virtually intact. Immunofluorescence microscopy studies revealed substantial PAR1 accumulation in an early endosome antigen-1-positive compartment in agonist-treated cells expressing SNX1 C terminus. By contrast, lysosome-associated membrane protein-1 distribution was unperturbed. Together, these findings strongly suggest a role for SNX1 in sorting of PAR1 from early endosomes to lysosomes. Moreover, this study provides the first example of a protein involved in lysosomal sorting of a G protein-coupled receptor in mammalian cells.  相似文献   
122.
Specific pathogen free (SPF) macaques provide valuable animal models for biomedical research. In 1989, the National Center for Research Resources [now Office of Research Infrastructure Programs (ORIP)] of the National Institutes of Health initiated experimental research contracts to establish and maintain SPF colonies. The derivation and maintenance of SPF macaque colonies is a complex undertaking requiring knowledge of the biology of the agents for exclusion and normal physiology and behavior of macaques, application of the latest diagnostic technology, facilitiy management, and animal husbandry. This review provides information on the biology of the four viral agents targeted for exclusion in ORIP SPF macaque colonies, describes current state‐of‐the‐art viral diagnostic algorithms, presents data from proficiency testing of diagnostic assays between laboratories at institutions participating in the ORIP SPF program, and outlines management strategies for maintaining the integrity of SPF colonies using results of diagnostic testing as a guide to decision making.  相似文献   
123.
124.
Recent advances in communication and sensor technology have catalyzed progress in remote monitoring capabilities for water quality. As a result, the ability to characterize dynamic hydrologic properties at adequate temporal and spatial scales has greatly improved. These advances have led to improved statistical and mechanistic modeling in monitoring of water quality trends at local, watershed and regional scales for freshwater, estuarine and marine ecosystems. In addition, they have greatly enhanced rapid (e.g., real-time) detection of hydrologic variability, recognized as a critical need for early warning systems and rapid response to harmful algal bloom events. Here, we present some of the landmark developments and technological achievements that led to the advent of real-time remote monitors for hydrologic properties. We conclude that increased use and continuing advancements of real-time remote monitoring (RTRM) and sensing technologies will become a progressively more important tool for evaluating water quality. Recent engineering and deployment of RTRM technologies by federal and state regulatory agencies, industries, and academic laboratories is now permitting rapid detection of, and responses to, environmental threats imposed by increased nutrient loadings, development of hypoxic and anoxic areas, toxicants, and harmful algal bloom outbreaks leading to fish kill events and potential human health impacts.  相似文献   
125.
Despite use of excellent molecular techniques, Litaker et al. (2002) cannot provide insights about the life history of toxic Pfiesteria piscicida because they showed no data in support of having used toxic strains; rather they presented evidence that they used non‐inducible strains. Litaker et al. did not find amoeboid stages or a chrysophyte‐like cyst stage in several cultures and unequivocally concluded that the stages do not exist in all P. piscicida strains. Thus, they did not consider the tenet that absence of evidence does not constitute proof of absence. Apparent discrepancies between the research by Litaker et al. and previous research on Pfiesteria can be resolved as follows: First, Litaker et al. did not use toxic strains. We have reported findings (similar to Litaker et al.) showing few amoeboid transformations in non‐inducible strains, which manifest some but not all of the forms that have been documented in some toxic strains. We, and others, have documented active toxicity to fish, transformations to amoebae, and chrysophyte‐like cysts in some clonal toxic strains. Second, the data from several recent publications, which were available but not mentioned by Litaker et al. or by Coats (2002) in accompanying commentary, have verified P. piscicida amoebae, chrysophyte‐like cysts, and other stages in some toxic strains through a combination of approaches including PCR data from clonal cultures.  相似文献   
126.
127.
Niemann-Pick type C is a neurodegenerative lysosomal storage disorder caused by mutations in either of two genes, npc1 and npc2. Cells lacking Npc1, which is a transmembrane protein related to the Hedgehog receptor Patched, or Npc2, which is a secreted cholesterol-binding protein, have aberrant organelle trafficking and accumulate large quantities of cholesterol and other lipids. Though the Npc proteins are produced by all cells, cerebellar Purkinje neurons are especially sensitive to loss of Npc function. Since Niemann-Pick type C disease involves circulating molecules such as sterols and steroids and a robust inflammatory response within the brain parenchyma, it is crucial to determine whether external factors affect the survival of Purkinje cells (PCs). We investigated the basis of neurodegeneration in chimeric mice that have functional npc1 in only some cells. Death of mutant npc1 cells was not prevented by neighboring wild-type cells, and wild-type PCs were not poisoned by surrounding mutant npc1 cells. PCs undergoing cell-autonomous degeneration have features consistent with autophagic cell death. Chimeric mice exhibited a remarkable delay and reduction of wasting and ataxia despite their substantial amount of mutant tissue and dying cells, revealing a robust mechanism that partially compensates for massive PC death.  相似文献   
128.
Human metapneumovirus (hMPV) is a recently described member of the Paramyxoviridae family/Pneumovirinae subfamily and shares many common features with respiratory syncytial virus (RSV), another member of the same subfamily. hMPV causes respiratory tract illnesses that, similar to human RSV, occur predominantly during the winter months and have symptoms that range from mild to severe cough, bronchiolitis, and pneumonia. Like RSV, the hMPV virus can be subdivided into two genetic subgroups, A and B. With RSV, a single monoclonal antibody directed at the fusion (F) protein can prevent severe lower respiratory tract RSV infection. Because of the high level of sequence conservation of the F protein across all the hMPV subgroups, this protein is likely to be the preferred antigenic target for the generation of cross-subgroup neutralizing antibodies. Here we describe the generation of a panel of neutralizing monoclonal antibodies that bind to the hMPV F protein. A subset of these antibodies has the ability to neutralize prototypic strains of both the A and B hMPV subgroups in vitro. Two of these antibodies exhibited high-affinity binding to the F protein and were shown to protect hamsters against infection with hMPV. The data suggest that a monoclonal antibody could be used prophylactically to prevent lower respiratory tract disease caused by hMPV.  相似文献   
129.
130.
Seagrasses and eutrophication   总被引:2,自引:0,他引:2  
This review summarizes the historic, correlative field evidence and experimental research that implicate cultural eutrophication as a major cause of seagrass disappearance. We summarize the underlying physiological responses of seagrass species, the potential utility of various parameters as indicators of nutrient enrichment in seagrasses, the relatively sparse available information about environmental conditions that exacerbate eutrophication effects, and the better known array of indirect stressors imposed by nutrient over-enrichment that influence seagrass growth and survival. Seagrass recovery following nutrient reductions is examined, as well as the status of modeling efforts to predict seagrass response to changing nutrient regimes.The most common mechanism invoked or demonstrated for seagrass decline under nutrient over-enrichment is light reduction through stimulation of high-biomass algal overgrowth as epiphytes and macroalgae in shallow coastal areas, and as phytoplankton in deeper coastal waters. Direct physiological responses such as ammonium toxicity and water-column nitrate inhibition through internal carbon limitation may also contribute. Seagrass decline under nutrient enrichment appears to involve indirect and feedback mechanisms, and is manifested as sudden shifts in seagrass abundance rather than continuous, gradual changes in parallel with rates of increased nutrient additions. Depending on the species, interactions of high salinity, high temperature, and low light have been shown to exacerbate the adverse effects of nutrient over-enrichment. An array of indirect effects of nutrient enrichment can accelerate seagrass disappearance, including sediment re-suspension from seagrass loss, increased system respiration and resulting oxygen stress, depressed advective water exchange from thick macroalgal growth, biogeochemical alterations such as sediment anoxia with increased hydrogen sulfide concentrations, and internal nutrient loading via enhanced nutrient fluxes from sediments to the overlying water. Indirect effects on trophic structure can also be critically important, for example, the loss of herbivores, through increased hypoxia/anoxia and other habitat shifts, that would have acted as “ecological engineers” in promoting seagrass survival by controlling algal overgrowth; and shifts favoring exotic grazers that out-compete seagrasses for space. Evidence suggests that natural seagrass population shifts are disrupted, slowed or indefinitely blocked by cultural eutrophication, and there are relatively few known examples of seagrass meadow recovery following nutrient reductions.Reliable biomarkers as early indicators of nutrient over-enriched seagrass meadows would benefit coastal resource managers in improving protective measures. Seagrasses can be considered as “long-term" integrators (days to weeks) of nutrient availability, especially through analyses of their tissue content, and of activities of enzymes such as nitrate reductase and alkaline phosphatase. The ratio of leaf nitrogen content to leaf mass has also shown promise as a “nutrient pollution indicator” for the seagrass Zostera marina, with potential application to other species. In modeling efforts, seagrass response to nutrient loading has proven difficult to quantify beyond localized areas because long-term data consistent in quality are generally lacking, and high inter-annual variability in abundance and productivity depending upon stochastic meteorological and hydrographic conditions.Efforts to protect remaining seagrass meadows from damage and loss under eutrophication, within countries and across regions, are generally lacking or weak and ineffective. Research needs to further understand about seagrasses and eutrophication should emphasize experimental studies to assess the response of a wider range of species to chronic, low-level as well as acute, pulsed nutrient enrichment. These experiments should be conducted in the field or in large-scale mesocosms following appropriate acclimation, and should emphasize factor interactions (N, P, C; turbidity; temperature; herbivory) to more closely simulate reality in seagrass ecosystems. They should scale up to address processes that occur over larger scales, including food-web dynamics that involve highly mobile predators and herbivores. Without any further research, however, one point is presently very clear: Concerted local and national actions, thus far mostly lacking, are needed worldwide to protect remaining seagrass meadows from accelerating cultural eutrophication in rapidly urbanizing coastal zones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号