首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11084篇
  免费   986篇
  国内免费   3篇
  2023年   47篇
  2022年   87篇
  2021年   164篇
  2020年   134篇
  2019年   137篇
  2018年   257篇
  2017年   227篇
  2016年   340篇
  2015年   496篇
  2014年   553篇
  2013年   691篇
  2012年   821篇
  2011年   770篇
  2010年   480篇
  2009年   395篇
  2008年   619篇
  2007年   566篇
  2006年   553篇
  2005年   527篇
  2004年   514篇
  2003年   437篇
  2002年   396篇
  2001年   172篇
  2000年   174篇
  1999年   162篇
  1998年   94篇
  1997年   90篇
  1996年   95篇
  1995年   84篇
  1994年   74篇
  1993年   76篇
  1992年   121篇
  1991年   122篇
  1990年   111篇
  1989年   100篇
  1988年   103篇
  1987年   96篇
  1986年   83篇
  1985年   93篇
  1984年   74篇
  1983年   75篇
  1982年   50篇
  1981年   43篇
  1979年   57篇
  1978年   49篇
  1976年   39篇
  1975年   55篇
  1974年   65篇
  1973年   58篇
  1972年   45篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
993.
994.
995.
996.
In this work, the variations in the metabolic profile of blood plasma from lung cancer patients and healthy controls were investigated through NMR-based metabonomics, to assess the potential of this approach for lung cancer screening and diagnosis. PLS-DA modeling of CPMG spectra from plasma, subjected to Monte Carlo Cross Validation, allowed cancer patients to be discriminated from controls with sensitivity and specificity levels of about 90%. Relatively lower HDL and higher VLDL + LDL in the patients' plasma, together with increased lactate and pyruvate and decreased levels of glucose, citrate, formate, acetate, several amino acids (alanine, glutamine, histidine, tyrosine, valine), and methanol, could be detected. These changes were found to be present at initial disease stages and could be related to known cancer biochemical hallmarks, such as enhanced glycolysis, glutaminolysis, and gluconeogenesis, together with suppressed Krebs cycle and reduced lipid catabolism, thus supporting the hypothesis of a systemic metabolic signature for lung cancer. Despite the possible confounding influence of age, smoking habits, and other uncontrolled factors, these results indicate that NMR-based metabonomics of blood plasma can be useful as a screening tool to identify suspicious cases for subsequent, more specific radiological tests, thus contributing to improved disease management.  相似文献   
997.
The importance of local chromatin structure in regulating replication initiation has become increasingly apparent. Most recently, histone methylation and nucleosome positioning have been added to the list of modifications demonstrated to regulate origins. In particular, the methylation states of H3K4, H3K36 and H4K20 have been associated with establishing active, repressed or poised origins depending on the timing and extent of methylation. The stability and precise positioning of nucleosomes has also been demonstrated to affect replication efficiency. Although it is not yet clear how these modifications alter the behavior of specific replication factors, ample evidence establishes their role in maintaining coordinated replication. This review will summarize recent advances in understanding these aspects of chromatin structure in DNA replication origin control.Key words: chromatin, histone methylation, nucleosome positioning, nucleosome stability, origin, post-translational modification, replication  相似文献   
998.
999.
Infection of the mammalian host by schistosome larvae occurs via the skin, although nothing is known about the development of immune responses to multiple exposures of schistosome larvae, and/or their excretory/secretory (E/S) products. Here, we show that multiple (4x) exposures, prior to the onset of egg laying by adult worms, modulate the skin immune response and induce CD4(+) cell hypo-responsiveness in the draining lymph node, and even modulate the formation of hepatic egg-induced granulomas. Compared to mice exposed to a single infection (1x), dermal cells from multiply infected mice (4x), were less able to support lymph node cell proliferation. Analysis of dermal cells showed that the most abundant in 4x mice were eosinophils (F4/80(+)MHC-II(-)), but they did not impact the ability of antigen presenting cells (APC) to support lymphocyte proliferation to parasite antigen in vitro. However, two other cell populations from the dermal site of infection appear to have a critical role. The first comprises arginase-1(+), Ym-1(+) alternatively activated macrophage-like cells, and the second are functionally compromised MHC-II(hi) cells. Through the administration of exogenous IL-12 to multiply infected mice, we show that these suppressive myeloid cell phenotypes form as a consequence of events in the skin, most notably an enrichment of IL-4 and IL-13, likely resulting from an influx of RELMα-expressing eosinophils. We further illustrate that the development of these suppressive dermal cells is dependent upon IL-4Rα signalling. The development of immune hypo-responsiveness to schistosome larvae and their effect on the subsequent response to the immunopathogenic egg is important in appreciating how immune responses to helminth infections are modulated by repeated exposure to the infective early stages of development.  相似文献   
1000.
Biological systems are characterized by a high number of interacting components. Determining the role of each component is difficult, addressed here in the context of biological oscillations. Rhythmic behavior can result from the interplay of positive feedback that promotes bistability between high and low activity, and slow negative feedback that switches the system between the high and low activity states. Many biological oscillators include two types of negative feedback processes: divisive (decreases the gain of the positive feedback loop) and subtractive (increases the input threshold) that both contribute to slowly move the system between the high- and low-activity states. Can we determine the relative contribution of each type of negative feedback process to the rhythmic activity? Does one dominate? Do they control the active and silent phase equally? To answer these questions we use a neural network model with excitatory coupling, regulated by synaptic depression (divisive) and cellular adaptation (subtractive feedback). We first attempt to apply standard experimental methodologies: either passive observation to correlate the variations of a variable of interest to system behavior, or deletion of a component to establish whether a component is critical for the system. We find that these two strategies can lead to contradictory conclusions, and at best their interpretive power is limited. We instead develop a computational measure of the contribution of a process, by evaluating the sensitivity of the active (high activity) and silent (low activity) phase durations to the time constant of the process. The measure shows that both processes control the active phase, in proportion to their speed and relative weight. However, only the subtractive process plays a major role in setting the duration of the silent phase. This computational method can be used to analyze the role of negative feedback processes in a wide range of biological rhythms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号