首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7201篇
  免费   491篇
  国内免费   3篇
  2023年   40篇
  2022年   62篇
  2021年   116篇
  2020年   111篇
  2019年   93篇
  2018年   208篇
  2017年   194篇
  2016年   271篇
  2015年   412篇
  2014年   443篇
  2013年   520篇
  2012年   629篇
  2011年   580篇
  2010年   367篇
  2009年   301篇
  2008年   467篇
  2007年   416篇
  2006年   419篇
  2005年   389篇
  2004年   364篇
  2003年   295篇
  2002年   276篇
  2001年   60篇
  2000年   47篇
  1999年   44篇
  1998年   39篇
  1997年   38篇
  1996年   35篇
  1995年   35篇
  1994年   25篇
  1993年   34篇
  1992年   33篇
  1991年   18篇
  1990年   28篇
  1989年   16篇
  1988年   14篇
  1987年   14篇
  1986年   14篇
  1985年   18篇
  1984年   15篇
  1983年   22篇
  1982年   18篇
  1981年   14篇
  1980年   12篇
  1979年   14篇
  1978年   17篇
  1976年   8篇
  1975年   19篇
  1974年   11篇
  1973年   13篇
排序方式: 共有7695条查询结果,搜索用时 31 毫秒
81.
The immune response of allophenic mice of type C57BL/6(A × SJL) F1 to GL administered in complete Freund's adjuvant was tested. Control mice of the three strains C57BL/6, A, and SJL are all nonresponders to this antigen. However, the F1 generations of C57BL/6 × A, C57BL/6 × SJL, and A × SJL were all responders to the antigen, so that the complementarity of at least two genes is confirmed. The allophenic mice showed no further complementation beyond the F1 generation, a result which may argue against the possibility that more than two genes control the response to GL in these mouse strains. Characterization of the allophenic mice over several months showed that they exhibit chimeric drift, both in their coat color and in peripheral white blood cell population. There is no apparent correlation of coat color to the lymphocyte composition of the mice at any one time. The mice are true chimeras, since killing of the two populations of white blood cells with two different anti-H-2 sera produced a 100 percent killing. The immune response of individual allophenic mice to GL showed a good correlation to the number of A × SJL lympho-cytes in the animal.Abbreviations used in this paper are GL an amino acid polymer of 57 %l-glutamic acid, 38%l-lysine, and 5%l-phenylalanine - GLT15 an amino acid polymer ofl-glutamic acid,l-lysine, and 15 %l-tyrosine - (T,G)-A-L an amino acid polymer having a polylysine backbone with side chains of polyd-l-alanine, terminating in short sequences of tyrosine and glutamic acid - GAT10 an amino acid polymer of 60%l-glutamic acid, 30%l-alanine, and 10%l-tyrosine - GLA5 an amino acid polymer of 57%l-glutamic acid, 38%l-lysine, and 5%l-alanine - DNP 2,4 dinitrophenyl - BGG bovine gamma globulin - FCS fetal calf serum - PWBC peripheral white blood cell - SWBC spleen white blood cell - T cell thymus-derived lymphocyte - B cell bone marrow-derived lymphocyte  相似文献   
82.
83.
Pectobacterium odoriferum is the primary causative agent in Kimchi cabbage soft-rot diseases. The pathogenic bacteria Pectobacterium genera are responsible for significant yield losses in crops. However, P. odoriferum shares a vast range of hosts with P. carotovorum, P. versatile, and P. brasiliense, and has similar biochemical, phenotypic, and genetic characteristics to these species. Therefore, it is essential to develop a P. odoriferum-specific diagnostic method for soft-rot disease because of the complicated diagnostic process and management as described above. Therefore, in this study, to select P. odoriferum-specific genes, species-specific genes were selected using the data of the P. odoriferum JK2.1 whole genome and similar bacterial species registered with NCBI. Thereafter, the specificity of the selected gene was tested through blast analysis. We identified novel species-specific genes to detect and quantify targeted P. odoriferum and designed specific primer sets targeting HAD family hydrolases. It was confirmed that the selected primer set formed a specific amplicon of 360 bp only in the DNA of P. odoriferum using 29 Pectobacterium species and related species. Furthermore, the population density of P. odoriferum can be estimated without genomic DNA extraction through SYBR Green-based real-time quantitative PCR using a primer set in plants. As a result, the newly developed diagnostic method enables rapid and accurate diagnosis and continuous monitoring of soft-rot disease in Kimchi cabbage without additional procedures from the plant tissue.  相似文献   
84.
We have combined equilibrium and steered molecular dynamics (SMD) simulations with principal component and correlation analyses to probe the mechanism of allosteric regulation in imidazole glycerol phosphate (IGP) synthase. An evolutionary analysis of IGP synthase revealed a conserved network of interactions leading from the effector binding site to the glutaminase active site, forming conserved communication pathways between the remote active sites. SMD simulations of the undocking of the ribonucleotide effector N1-[(5'-phosphoribulosyl)-formino]-5'-aminoimidazole carboxamide ribonucleotide (PRFAR) resulted in a large scale hinge-opening motion at the interface. Principal component analysis and a correlation analysis of the equilibration protein motion indicate that the dynamics involved in the allosteric transition are mediated by coupled motion between sites that are more than 25 A apart. Furthermore, conserved residues at the substrate-binding site, within the barrel, and at the interface were found to exhibit highly correlated motion during the allosteric transition. The coupled motion between PRFAR unbinding and the directed opening of the interface is interpreted in combination with kinetic assays for the wild-type and mutant systems to develop a model of allosteric regulation in IGP synthase that is monitored and investigated with atomic resolution.  相似文献   
85.
Citrus variegated chlorosis (CVC) is caused by Xylella fastidiosa, a phytopathogenic bacterium that can infect all Citrus sinensis cultivars. The endophytic bacterial communities of healthy, resistant, and CVC-affected citrus plants were studied by using cultivation as well as cultivation-independent techniques. The endophytic communities were assessed in surface-disinfected citrus branches by plating and denaturing gradient gel electrophoresis (DGGE). Dominant isolates were characterized by fatty-acid methyl ester analysis as Bacillus pumilus, Curtobacterium flaccumfaciens, Enterobacter cloacae, Methylobacterium spp. (including Methylobacterium extorquens, M. fujisawaense, M. mesophilicum, M. radiotolerans, and M. zatmanii), Nocardia sp., Pantoea agglomerans, and Xanthomonas campestris. We observed a relationship between CVC symptoms and the frequency of isolation of species of Methylobacterium, the genus that we most frequently isolated from symptomatic plants. In contrast, we isolated C. flaccumfaciens significantly more frequently from asymptomatic plants than from those with symptoms of CVC while P. agglomerans was frequently isolated from tangerine (Citrus reticulata) and sweet-orange (C. sinensis) plants, irrespective of whether the plants were symptomatic or asymptomatic or showed symptoms of CVC. DGGE analysis of 16S rRNA gene fragments amplified from total plant DNA resulted in several bands that matched those from the bacterial isolates, indicating that DGGE profiles can be used to detect some endophytic bacteria of citrus plants. However, some bands had no match with any isolate, suggesting the occurrence of other, nonculturable or as yet uncultured, endophytic bacteria. A specific band with a high G+C ratio was observed only in asymptomatic plants. The higher frequency of C. flaccumfaciens in asymptomatic plants suggests a role for this organism in the resistance of plants to CVC.  相似文献   
86.
Multi-protein complexes, termed “inflammasomes,” are known to contribute to neuronal cell death and brain injury following ischemic stroke. Ischemic stroke increases the expression and activation of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) Pyrin domain containing 1 and 3 (NLRP1 and NLRP3) inflammasome proteins and both interleukin (IL)-1β and IL-18 in neurons. In this study, we provide evidence that activation of either the NF-κB and MAPK signaling pathways was partly responsible for inducing the expression and activation of NLRP1 and NLRP3 inflammasome proteins and that these effects can be attenuated using pharmacological inhibitors of these two pathways in neurons and brain tissue under in vitro and in vivo ischemic conditions, respectively. Moreover, these findings provided supporting evidence that treatment with intravenous immunoglobulin (IVIg) preparation can reduce activation of the NF-κB and MAPK signaling pathways resulting in decreased expression and activation of NLRP1 and NLRP3 inflammasomes, as well as increasing expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL, in primary cortical neurons and/or cerebral tissue under in vitro and in vivo ischemic conditions. In summary, these results provide compelling evidence that both the NF-κB and MAPK signaling pathways play a pivotal role in regulating the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons and brain tissue under ischemic conditions. In addition, treatment with IVIg preparation decreased the activation of the NF-κB and MAPK signaling pathways, and thus attenuated the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons under ischemic conditions. Hence, these findings suggest that therapeutic interventions that target inflammasome activation in neurons may provide new opportunities in the future treatment of ischemic stroke.  相似文献   
87.
Sepsis is a systemic inflammatory response resulting from local infection due, at least in part, to impaired neutrophil migration. IL-12 and IL-18 play an important role in neutrophil migration. We have investigated the mechanism and relative role of IL-12 and IL-18 in polymicrobial sepsis induced by cecal ligation and puncture (CLP) in mice. Wild-type (WT) and IL-18(-/-) mice were resistant to sublethal CLP (SL-CLP) sepsis. In contrast, IL-12(-/-) mice were susceptible to SL-CLP sepsis with high bacteria load in peritoneal cavity and systemic inflammation (serum TNF-alpha and lung neutrophil infiltration). The magnitude of these events was similar to those observed in WT mice with lethal CLP sepsis. The inability of IL-12(-/-) mice to restrict the infection was not due to impairment of neutrophil migration, but correlated with decrease of phagocytosis, NO production, and microbicidal activities of their neutrophils, and with reduction of systemic IFN-gamma synthesis. Consistent with this observation, IFN-gamma(-/-) mice were as susceptible to SL-CLP as IL-12(-/-) mice. Moreover, addition of IFN-gamma to cultures of neutrophils from IL-12(-/-) mice restored their phagocytic, microbicidal activities and NO production. Mortality of IL-12(-/-) mice to SL-CLP was prevented by treatment with IFN-gamma. Thus we show that IL-12, but not IL-18, is critical to an efficient host defense in polymicrobial sepsis. IL-12 acts through induction of IFN-gamma and stimulation of phagocytic and microbicidal activities of neutrophils, rather than neutrophil migration per se. Our data therefore provide further insight into the defense mechanism against this critical area of infectious disease.  相似文献   
88.
Proliferation and differentiation of neural stem cells (NSCs) have a crucial role to ensure neurogenesis and gliogenesis in the mammalian brain throughout life. As there is growing evidence for the significance of metabolism in regulating cell fate, knowledge on the metabolic programs in NSCs and how they evolve during differentiation into somatic cells may provide novel therapeutic approaches to address brain diseases. In this work, we applied a quantitative analysis to assess how the central carbon metabolism evolves upon differentiation of NSCs into astrocytes. Murine embryonic stem cell (mESC)-derived NSCs and astrocytes were incubated with labelled [1-13C]glucose and the label incorporation into intracellular metabolites was followed by GC-MS. The obtained 13C labelling patterns, together with uptake/secretion rates determined from supernatant analysis, were integrated into an isotopic non-stationary metabolic flux analysis (13C-MFA) model to estimate intracellular flux maps. Significant metabolic differences between NSCs and astrocytes were identified, with a general downregulation of central carbon metabolism during astrocytic differentiation. While glucose uptake was 1.7-fold higher in NSCs (on a per cell basis), a high lactate-secreting phenotype was common to both cell types. Furthermore, NSCs consumed glutamine from the medium; the highly active reductive carboxylation of alpha-ketoglutarate indicates that this was converted to citrate and used for biosynthetic purposes. In astrocytes, pyruvate entered the TCA cycle mostly through pyruvate carboxylase (81%). This pathway supported glutamine and citrate secretion, recapitulating well described metabolic features of these cells in vivo. Overall, this fluxomics study allowed us to quantify the metabolic rewiring accompanying astrocytic lineage specification from NSCs.  相似文献   
89.
Cultivating the uncultured: limits, advances and future challenges   总被引:1,自引:0,他引:1  
Since the invention of the Petri dish, there have been continuous efforts to improve efficiency in microbial cultivation. These efforts were devoted to the attainment for diverse growth conditions, simulation of in situ conditions and achievement of high-throughput rates. As a result, prokaryotes catalysing novel redox reactions as well as representatives of abundant, but not-yet cultured taxa, were isolated. Significant insights into microbial physiology have been made by studying the small number of prokaryotes already cultured. However, despite these numerous breakthroughs, microbial cultivation is still a low-throughput process. The main hindrance to cultivation is likely due to the prevailing lack of knowledge on targeted species. In this review, we focus on the limiting factors surrounding cultivation. We discuss several cultivation obstacles, including the loss of microbial cell–cell communication following species isolation. Future research directions, including the refinement of culture media, strategies based on cell–cell communication and high-throughput innovations, are reviewed. We further propose that a combination of these approaches is urgently required to promote cultivation of uncultured species, thereby dawning a new era in the field.  相似文献   
90.
Accumulation of amyloid-β (Aβ) is widely accepted as the key instigator of Alzheimer’s disease (AD). The proposed mechanism is that accumulation of Aβ results in inflammatory responses, oxidative damages, neurofibrillary tangles and, subsequently, neuronal/synaptic dysfunction and neuronal loss. Given the critical role of Aβ in the disease process, the proteases that produce this peptide are obvious targets. The goal would be to develop drugs that can inhibit the activity of these targets. Protease inhibitors have proved very effective for treating other disorders such as AIDS and hypertension. Mutations in APP (amyloid-β precursor protein), which flanks the Aβ sequence, cause early-onset familial AD, and evidence has pointed to the APP-to-Aβ conversion as a possible therapeutic target. Therapies aimed at modifying Aβ-related processes aim higher up the cascade and are therefore more likely to be able to alter the progression of the disease. However, it is not yet fully known whether the increases in Aβ levels are merely a result of earlier events that were already causing the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号