首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25373篇
  免费   1653篇
  国内免费   5篇
  2023年   222篇
  2022年   388篇
  2021年   730篇
  2020年   539篇
  2019年   622篇
  2018年   850篇
  2017年   786篇
  2016年   1044篇
  2015年   1435篇
  2014年   1510篇
  2013年   1785篇
  2012年   1975篇
  2011年   1941篇
  2010年   1204篇
  2009年   1056篇
  2008年   1403篇
  2007年   1316篇
  2006年   1253篇
  2005年   1013篇
  2004年   948篇
  2003年   824篇
  2002年   738篇
  2001年   452篇
  2000年   400篇
  1999年   312篇
  1998年   177篇
  1997年   121篇
  1996年   119篇
  1995年   107篇
  1994年   96篇
  1993年   100篇
  1992年   157篇
  1991年   123篇
  1990年   129篇
  1989年   90篇
  1988年   94篇
  1987年   81篇
  1986年   77篇
  1985年   71篇
  1984年   64篇
  1983年   59篇
  1982年   50篇
  1981年   49篇
  1980年   41篇
  1979年   57篇
  1978年   55篇
  1976年   32篇
  1975年   53篇
  1974年   36篇
  1973年   30篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Proper hyphal morphogenesis is essential for the establishment and progression of invasive disease caused by filamentous fungi. In the human pathogen Aspergillus fumigatus, signalling cascades driven by Ras and Ras‐like proteins orchestrate a wide variety of cellular processes required for hyphal growth. For activation, these proteins require interactions with Ras‐subfamily‐specific guanine nucleotide exchange factors (RasGEFs). Although Ras‐protein networks are essential for virulence in all pathogenic fungi, the importance of RasGEF proteins is largely unexplored. Afumigatus encodes four putative RasGEFs that represent three separate classes of RasGEF proteins (SH3‐, Ras guanyl nucleotide‐releasing protein [RasGRP]–, and LTE‐class), each with fungus‐specific attributes. Here, we show that the SH3‐class and RasGRP‐class RasGEFs are required for properly timed polarity establishment during early growth and branch emergence as well as for cell wall stability. Further, we show that SH3‐class RasGEF activity is essential for polarity establishment and maintenance, a phenotype that is, at least, partially independent of the major Afumigatus Ras proteins, RasA and RasB. Finally, loss of both SH3‐class RasGEFs resulted in avirulence in multiple models of invasive aspergillosis. Together, our findings suggest that RasGEF activity is essential for the integration of multiple signalling networks to drive invasive growth in Afumigatus.  相似文献   
982.
Mammalian oocytes lack centrioles but can generate bipolar spindles using several different mechanisms. For example, mouse oocytes have acentriolar microtubule organization centers (MTOCs) that contain many components of the centrosome, and which initiate microtubule polymerization. On the contrary, human oocytes lack MTOCs and the Ran‐mediated mechanisms may be responsible for spindle assembly. Complete knowledge of the different mechanisms of spindle assembly is lacking in various mammalian oocytes. In this study, we demonstrate that both MTOC‐ and Ran‐mediated microtubule nucleation are required for functional meiotic metaphase I spindle generation in porcine oocytes. Acentriolar MTOC components, including Cep192 and pericentrin, were absent in the germinal vesicle and germinal vesicle breakdown stages. However, they start to colocalize to the spindle microtubules, but are absent in the meiotic spindle poles. Knockdown of Cep192 or inhibition of Polo‐like kinase 1 activity impaired the recruitment of Cep192 and pericentrin to the spindles, impaired microtubule assembly, and decreased the polar body extrusion rate. When the RanGTP gradient was perturbed by the expression of dominant negative or constitutively active Ran mutants, severe defects in microtubule nucleation and cytokinesis were observed, and the localization of MTOC materials in the spindles was abolished. These results demonstrate that the stepwise involvement of MTOC‐ and Ran‐mediated microtubule assembly is crucial for the formation of meiotic spindles in porcine oocytes, indicating the diversity of spindle formation mechanisms among mammalian oocytes.  相似文献   
983.
Flavodiiron proteins (FDPs) play key roles in biological response mechanisms against oxygen and/or nitric oxide; in particular they are present in oxygenic phototrophs (including cyanobacteria and gymnosperms). Two conserved domains define the core of this family of proteins: a N-terminal metallo-β-lactamase-like domain followed by a C-terminal flavodoxin-like one, containing the catalytic diiron centre and a FMN cofactor, respectively. Members of the FDP family may present extra modules in the C-terminus, and were classified into several classes according to their distribution and composition. The cyanobacterium Synechocystis sp. PCC6803 contains four Class C FDPs (Flv1-4) that include at the C-terminus an additional NAD(P)H:flavin oxidoreductase (FlR) domain. Two of them (Flv3 and Flv4) have the canonical diiron ligands (Class C, Type 1), while the other two (Flv1 and Flv2) present different residues in that region (Class C, Type 2). Most phototrophs, either Bacterial or Eukaryal, contain at least two FDP genes, each encoding for one of those two types. Crystals of the Flv1 two core domains (Flv1-ΔFlR), without the C-terminal NAD(P)H:flavin oxidoreductase extension, were obtained and the structure was determined. Its pseudo diiron site contains non-canonical basic and neutral residues, and showed anion moieties, instead. The presented structure revealed for the first time the structure of the two-domain core of a Class C-Type 2 FDP.  相似文献   
984.
A robust method is presented for evaluating the diffusion properties of chemicals in ex vivo biological tissues. Using this method that relies only on thickness and collimated transmittance measurements, the diffusion properties of glycerol, fructose, polypropylene glycol and water in muscle tissues were evaluated. Amongst other results, the diffusion coefficient of glycerol in colorectal muscle was estimated with a value of 3.3 × 10?7 cm2/s. Due to the robustness and simplicity of the method, it can be used in other fields of biomedical engineering, namely in organ cryoprotection and food industry.   相似文献   
985.
986.
987.
Ceratocystis fimbriata Ellis & Halsted recently was recorded causing seed and seedling blight on Carapa guianensis Aubl. (andiroba), a tree species native to the Amazon Rainforest and prized for its valuable timber and medicinal seed oil. C. fimbriata more commonly causes wilt type diseases in woody hosts, especially on non-native host trees. However, on andiroba the disease occurs on seedlings and seeds, affecting the species regeneration. We studied 73 isolates of C. fimbriata on andiroba from three regions of the Amazon Basin to see if they represented natural or introduced populations. Analysis of ITS rDNA sequences and phylogenetic analysis of mating type genes revealed new haplotypes of C. fimbriata from the Latin American Clade that were closely related to other Brazilian populations of the fungus. In mating experiments, andiroba isolates were inter-fertile with tester strains of C. fimbriata from Brazil and elsewhere, confirming that they belong to a single biological species. Using microsatellite markers, 14 genotypes and populations with intermediate levels of genetic variability were found, suggesting that the fungus is indigenous to the Amazon Basin. Inoculation tests indicated that the andiroba isolates are host-specialized on andiroba, supporting the proposition of the special form C. fimbriata f. sp. carapa.  相似文献   
988.
Kluyveromyces marxianus CCT 7735 has been used to produce ethanol, aromatic compounds, enzymes and heterologous proteins besides assimilates lactose as carbon source. Its genome has 10.7 Mb and encodes 4787 genes distributed in 8 nuclear chromosomes and one mitochondrial. Contrary to Kluyveromyces lactis, which has a unique LAC12 gene (encodes lactose permease), K. marxianus possesses four. The presence of degenerated copies and Solo-LTRs related to retrotransposon TKM close to the LAC12 genes in K. marxianus indicates ectopic recombinations. The Lac12 permeases of K. marxianus and K. lactis are conserved, however the conservation is higher between the copy of the left side of the chromosome three and the unique copy of K. lactis, indicating that this copy is the ancestor. The expression of the four LAC12 genes occurred in aerobiosis and hypoxia. Notably, the high lactose consumption in hypoxia seems to be related to the high expression of the LAC12 genes.  相似文献   
989.
Aqueous two‐phase extraction (ATPE) has been showing significant potential in the biopharmaceutical industry, allowing the selective separation of high‐value proteins directly from unclarified cell culture supernatants. In this context, effective high‐throughput screening tools are critical to perform a rapid empirical optimization of operating conditions. In particular, microfluidic ATPE screening devices, coupled with fluorescence microscopy to continuously monitor the partition of fluorophore‐labeled proteins, have been recently demonstrated to provide short diffusion distances and rapid partition, using minimal reagent volumes. Nevertheless, the currently overlooked influence of the labeling procedure on partition must be carefully evaluated to validate the extrapolation of results to the unlabeled molecule. Here, three fluorophores with different global charge and reactivity selected to label immunoglobulin G (IgG) at degrees of labeling (DoL) ranging from 0.5 to 7.6. Labeling with BODIPY FL maleimide (DoL = 0.5), combined with tris(2‐carboxyethyl) phosphine (TCEP) to generate free thiol groups, is the most promising strategy to minimize the influence of the fluorophore on partition. In particular, the partition coefficient (Kp) measured in polyethylene glycol (PEG) 3350–phosphate systems with and without the addition of NaCl using microtubes (batch) or microfluidic devices (continuous) is comparable to those quantified for the native protein.  相似文献   
990.
Down syndrome (DS) is a human genetic disease caused by trisomy of chromosome 21 and characterized by early developmental brain abnormalities. Dysfunctional endosomal pathway in neurons is an early event of DS and Alzheimer's disease. Recently, we have demonstrated that exosome secretion is upregulated in human DS postmortem brains, in the brain of the trisomic mouse model Ts[Rb(12.1716)]2Cje (Ts2) and by DS fibroblasts as compared with disomic controls. High levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Partially blocking exosome secretion by DS fibroblasts exacerbated a pre‐existing early endosomal pathology. We thus hypothesized that enhanced CD63 expression induces generation of intraluminal vesicles (ILVs) in late endosomes/multivesicular bodies (MVBs), increasing exosome release as an endogenous mechanism to mitigate endosomal abnormalities in DS. Herein, we show a high‐resolution electron microscopy analysis of MVBs in neurons of the frontal cortex of 12‐month‐old Ts2 mice and littermate diploid controls. Our quantitative analysis revealed that Ts2 MVBs are larger, more abundant, and contain a higher number of ILVs per neuron compared to controls. These findings were further corroborated biochemically by Western blot analysis of purified endosomal fractions showing higher levels of ILVs proteins in the same fractions containing endosomal markers in the brain of Ts2 mice compared to controls. These data suggest that upregulation of ILVs production may be a key homeostatic mechanism to alleviate endosomal dysregulation via the endosomal–exosomal pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号