首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9764篇
  免费   715篇
  国内免费   828篇
  2024年   14篇
  2023年   124篇
  2022年   330篇
  2021年   642篇
  2020年   359篇
  2019年   475篇
  2018年   472篇
  2017年   320篇
  2016年   452篇
  2015年   696篇
  2014年   799篇
  2013年   786篇
  2012年   932篇
  2011年   857篇
  2010年   499篇
  2009年   451篇
  2008年   504篇
  2007年   420篇
  2006年   328篇
  2005年   270篇
  2004年   238篇
  2003年   242篇
  2002年   201篇
  2001年   147篇
  2000年   113篇
  1999年   129篇
  1998年   74篇
  1997年   68篇
  1996年   64篇
  1995年   51篇
  1994年   36篇
  1993年   25篇
  1992年   39篇
  1991年   22篇
  1990年   21篇
  1989年   37篇
  1988年   16篇
  1987年   8篇
  1986年   9篇
  1985年   21篇
  1984年   4篇
  1983年   8篇
  1982年   2篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 490 毫秒
91.
92.
Vitamin E has long been identified as a major lipid-soluble chain-breaking antioxidant in mammals. α-Tocopherol is a vitamin E component and the major form in the human body. We propose that, besides its direct chain-breaking antioxidant activity, α-tocopherol may exert an indirect antioxidant activity by enhancing the cell's antioxidant system as a Phase II enzyme inducer. We investigated α-tocopherol's inducing effect on Phase II enzymes and its protective effect on acrolein-induced toxicity in a human retinal pigment epithelial (RPE) cell line, ARPE-19. Acrolein, a major component of cigarette smoke and also a product of lipid peroxidation, at 75 μmol/L over 24 h, caused significant loss of ARPE-19 cell viability, increased oxidative damage, decreased antioxidant defense, inactivation of the Keap1/Nrf2 pathway, and mitochondrial dysfunction. ARPE-19 cells have been used as a model of smoking- and age-related macular degeneration. Pretreatment with α-tocopherol activated the Keap1/Nrf2 pathway by increasing Nrf2 expression and inducing its translocation to the nucleus. Consequently, the expression and/or activity of the following Phase II enzymes increased: glutamate cysteine ligase, NAD(P)H:quinone oxidoreductase 1, heme-oxygenase 1, glutathione S-transferase and superoxide dismutase; total antioxidant capacity and glutathione also increased. This antioxidant defense enhancement protected ARPE-19 cells from an acrolein-induced decrease in cell viability, lowered reactive oxygen species and protein oxidation levels, and improved mitochondrial function. These results suggest that α-tocopherol protects ARPE-19 cells from acrolein-induced cellular toxicity, not only as a chain-breaking antioxidant, but also as a Phase II enzyme inducer.  相似文献   
93.
94.
95.
96.
In this study, a homogenous polysaccharide (FSP), with an average molecular weight of 9.08 × 104 Da, was isolated from Forsythia suspense and its antibacterial potential against Enterobacter cloacae producing SHV‐12 ESBL was investigated. Growth kinetics, in vitro competition and biofilm formation experiments demonstrated that SHV‐12 ESBL contributed to a fitness benefit to E cloacae strain. The antibacterial activity of FSP (2.5, 5.0 and 10.0 μg/mL) was tested against E cloacae bearing SHV‐12 ESBL gene using bacterial sensitivity, agar bioassay and agar well diffusion assays. It was found that the addition of FSP demonstrated potent antibacterial activities against this bacterial as showed by the decrease of bacterial growth and the increase of the inhibition zone diameter. Furthermore, SHV‐12 ESBL gene expression was decreased in E cloacae strain following different FSP treatment in a concentration‐dependent manner. In conclusion, these data showed that FSP exhibited potent good antibacterial activity against E cloacae producing SHV‐12 ESBL via inhibition of SHV‐12 ESBL gene expression, which may promote the development of novel natural antibacterial agents to treat infections caused by this drug‐resistant bacterial pathogen.  相似文献   
97.
98.
Excessive neutrophil extracellular trap (NET) formation may contribute to polymyositis (PM)‐associated interstitial lung diseases (ILD), but the underlying mechanism is not fully revealed. In this study, we found that NET accelerated the progression of ILD and promoted pulmonary fibrosis (PF) in vivo. miR‐7 expression was down‐regulated in lung tissue of PM group than control group, and NETs further decreased miR‐7 expression. TLR9 and Smad2 were up‐regulated in lung tissue of PM group than control group, and NETs further increased TLR9 and Smad2 expressions. In vitro experiments showed that PMA‐treated NETs accelerated the proliferation of LF and their differentiation into myofibroblast (MF), whereas DNase I decreased the promotion effect of NETs. Neutrophil extracellular trap components myeloperoxidase (MPO) and histone 3 also promoted the proliferation and differentiation of LF. In addition, we demonstrated that TLR9 involved in the regulation of NETs on LF proliferation and differentiation, and confirmed the interaction between miR‐7 and Smad2 in LF. Finally, miR‐7‐Smad2 pathway was confirmed to be involved in the regulation of TLR9 on LF proliferation and differentiation. Therefore, NETs promote PM‐related ILD, and TLR9‐miR‐7‐Smad2 signalling pathway is involved in the proliferation of LFs and their differentiation into MFs.  相似文献   
99.
A growing number of studies recognize that long non‐coding RNAs (lncRNAs) are essential to mediate multiple tumorigenic processes, including hepatic tumorigenesis. However, the pathological mechanism of lncRNA‐regulated liver cancer cell growth remains poorly understood. In this study, we identified a novel function lncRNA, named polo‐like kinase 4 associated lncRNA (lncRNA PLK4, GenBank Accession No. RP11‐50D9.3), whose expression was dramatically down‐regulated in hepatocellular carcinoma (HCC) tissues and cells. Interestingly, talazoparib, a novel and highly potent poly‐ADP‐ribose polymerase 1/2 (PARP1/2) inhibitor, could increase lncRNA PLK4 expression in HepG2 cells. Importantly, we showed that talazoparib‐induced lncRNA PLK4 could function as a tumour suppressor gene by Yes‐associated protein (YAP) inactivation and induction of cellular senescence to inhibit liver cancer cell viability and growth. In summary, our findings reveal the molecular mechanism of talazoparib‐induced anti‐tumor effect, and suggest a potential clinical use of talazoparib‐targeted lncRNA PLK4/YAP‐dependent cellular senescence for the treatment of HCC.  相似文献   
100.
The increase in bone resorption and/or the inhibition of bone regeneration caused by wear particles are the main causes of periprosthetic osteolysis. The SOST gene and Sclerostin, a protein synthesized by the SOST gene, are the characteristic marker of osteocytes and regulate bone formation and resorption. We aimed to verify whether the SOST gene was involved in osteolysis induced by titanium (Ti) particles and to investigate the effects of SOST reduction on osteolysis. The results showed osteolysis on the skull surface with an increase of sclerostin levels after treated with Ti particles. Similarly, sclerostin expression in MLO-Y4 osteocytes increased when treated with Ti particles in vitro. After reduction of SOST, local bone mineral density and bone volume increased, while number of lytic pores on the skull surface decreased and the erodibility of the skull surface was compensated. Histological analyses revealed that SOST reduction increased significantly alkaline phosphatase- (ALP) and osterix-positive expression on the skull surface which promoted bone formation. ALP activity and mineralization of MC3T3-E1 cells also increased in vitro when SOST was silenced, even if treated with Ti particles. In addition, Ti particles decreased β-catenin expression with an increase in sclerostin levels, in vivo and in vitro. Inversely, reduction of SOST expression increased β-catenin expression. In summary, our results suggested that reduction of SOST gene can activate the Wnt/β-catenin signalling pathway, promoting bone formation and compensated for bone loss induced by Ti particles. Thus, this study provided new perspectives in understanding the mechanisms of periprosthetic osteolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号