首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   866篇
  免费   53篇
  国内免费   1篇
  2023年   5篇
  2022年   12篇
  2021年   34篇
  2020年   25篇
  2019年   22篇
  2018年   36篇
  2017年   21篇
  2016年   32篇
  2015年   53篇
  2014年   51篇
  2013年   67篇
  2012年   94篇
  2011年   88篇
  2010年   44篇
  2009年   46篇
  2008年   66篇
  2007年   44篇
  2006年   38篇
  2005年   31篇
  2004年   29篇
  2003年   13篇
  2002年   26篇
  2001年   12篇
  2000年   13篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1988年   2篇
排序方式: 共有920条查询结果,搜索用时 15 毫秒
71.
72.
A fluorescent method was developed for the detection of unpaired and mismatched DNAs using a MutS-fluorophore conjugate. The fluorophore, 2-(4'-(iodoacetoamido)anilino) naphthalene-6-sulfonic acid (IAANS), was site-specifically attached to the 469 position of Thermus aquaticus (Taq.) MutS mutant (C42A/T469C). The fluorophore labeled residue located at the dimer interface of the protein undergoes a drastic conformational change upon binding with mismatched DNA. The close proximity of the two identical fluorescent molecules presumably causes the self-quenching of the fluorophore, since fluorescence emission of the biosensor decreases with increasing concentrations of mismatched DNA. The order of binding affinity for each unpaired and mismatched DNA obtained by this method was DeltaT (Kd=52 nM)>GT (62 nM)>DeltaC (130 nM)>CT (160 nM)>DeltaG (170 nM)>DeltaA (250 nM)>CC (720 nM)>AT (950 nM). This order is comparable to the previous results of the gel mobility shift assay. Thus, this method can be a simple, useful tool for elucidating the mechanism of DNA mismatch repair as well as a novel probe for detecting of genetic mutation.  相似文献   
73.
Burkholderia sp. HY-10 isolated from the digestive tracts of the longicorn beetle, Prionus insularis, produced an extracellular lipase with a molecular weight of 33.5 kDa estimated by SDS-PAGE. The lipase was purified from the culture supernatant to near electrophoretic homogenity by a one-step adsorption-desorption procedure using a polypropylene matrix followed by a concentration step. The purified lipase exhibited highest activities at pH 8.5 and 60 degrees . A broad range of lipase substrates, from C4 to C18 rho-nitrophenyl esters, were hydrolyzed efficiently by the lipase. The most efficient substrate was rho-nitrophenyl caproate (C6). A 2485 bp DNA fragment was isolated by PCR amplification and chromosomal walking which encoded two polypeptides of 364 and 346 amino acids, identified as a lipase and a lipase foldase, respectively. The N-terminal amino acid sequence of the purified lipase and nucleotide sequence analysis predicted that the precursor lipase was proteolytically modified through the secretion step and produced a catalytically active 33.5 kDa protein. The deduced amino acid sequence for the lipase shared extensive similarity with those of the lipase family I.2 of lipases from other bacteria. The deduced amino acid sequence contained two Cystein residues forming a disulfide bond in the molecule and three, well-conserved amino acid residues, Ser131, His330, and Asp308, which composed the catalytic triad of the enzyme.  相似文献   
74.
75.
The brains of Alzheimer's disease (AD) patients are characterized by large deposits of amyloid beta peptide (Abeta). Abeta is known to increase free radical production in nerve cells, leading to cell death that is characterized by lipid peroxidation, free radical formation, protein oxi-dation, and DNA/RNA oxidation. In this study, we selected an extract of Gardenia jasminoides by screening, and investigated its ameliorating effects on Abeta-induced oxidative stress using PC12 cells. The effects of the extract were evaluated using the 2,7 -dichlorofluorescein diacetate (DCF-DA) assay and the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. To find the active component, the ethanol extract was partitioned with hexane, chloroform, and ethyl acetate, respectively, and the active component was purified by silica-gel column chromatography and HPLC. The results suggested that Gardenia jasminoides extract can reduce the cytotoxicity of Abeta in PC 12 cells, possibly by reducing oxidative stress.  相似文献   
76.
R-type pyocin is a bacteriophage tail-shaped bacteriocin produced by Pseudomonas aeruginosa, but its physiological roles are relatively unknown. Here we describe a role of R-type pyocin in the competitive growth advantages between P. aeruginosa strains. Partial purification and gene disruption revealed that the major killing activity from the culture supernatant of PA14 is attributed to R-type pyocin, neither F-type nor S-type pyocins. These findings may provide insight into the forces governing P. aeruginosa population dynamics to promote and maintain its biodiversity.  相似文献   
77.
SoxR is a [2Fe‐2S]‐containing sensor‐regulator, which is activated through oxidation by redox‐active compounds (RACs). SoxRs show differential sensitivity to RACs, partly due to different redox potentials, such that Escherichia coli (Ec) SoxR with lower potential respond to broader range of RACs than Streptomyces coelicolor (Sc) SoxR. In S. coelicolor, the RACs that do not activate ScSoxR did not inhibit growth, suggesting that ScSoxR is tuned to respond to growth‐inhibitory RACs. Based on sequence comparison and mutation studies, two critical amino acids around the [2Fe‐2S] binding site were proposed as key determinants of sensitivity. ScSoxR‐like mutation (R127L/P131V) in EcSoxR changed its sensitivity profile as ScSoxR, whereas EcSoxR‐like mutation (L126R/V130P) in ScSoxR caused relaxed response. In accordance, the redox potentials of EcSoxRR127L/P131V and ScSoxRL126R/V130P were estimated to be ?192 ± 8 mV and ?273 ± 10 mV, respectively, approaching that of ScSoxR (?185 mV) and EcSoxR (?290 mV). Molecular dynamics simulations revealed that the R127L and P131V substitutions in EcSoxR caused more electropositive environment around [2Fe‐2S], making it harder to get oxidized. This reveals a mechanism to modulate redox‐potential in [Fe‐S]‐containing sensors by point mutations and to evolve a sensor with differential sensitivity to achieve optimal cellular physiology.  相似文献   
78.
79.
Ahn J  Lee TH  Li T  Heo K  Hong S  Ko J  Kim Y  Shin YB  Kim MG 《Biosensors & bioelectronics》2011,26(12):4690-4696
We demonstrated that the detection of human interleukin 5 (IL5) with a higher sensitivity than the enzyme-linked immunosorbent assay (ELISA) was possible using mass-producible submicron-gap interdigitated electrodes (IDEs) combined with signal amplification by a gold nanoparticle (AuNP) and gold enhancement. IDEs, facing comb-shape electrodes, can act as simple and miniaturized devices for immunoassay. An IDE with a gap size of 400nm was fabricated by a stepper photolithography process and was applied for the immunoassay of human IL5. A biotinylated anti-human IL5 was immobilized on the streptavidin-modified IDE, and biotin-bovine serum albumin (BSA) and BSA were added sequentially to reduce non-specific binding between the streptavidin-immobilized IDE surface and other proteins. The immunoassay procedure included three main steps: the reaction of human IL5 to form antigen-antibody complexes, the binding of AuNP conjugation with an antibody against human IL5 for the sandwich immunoassay, and gold enhancement for electrical signal amplification. The measurement of electrical current at each step showed that the gold enhancement step was very critical in detection of the concentration of human IL5. Analysis by scanning electron microscope (SEM) showed that close to 1μm particles were formed from 10nm AuNP by the gold enhancement reaction using gold ions and hydroxylamine. Under optimized conditions, human IL5 could be analyzed at 1pgmL(-1) with a wide dynamic range (from 10(-3) to 100ngmL(-1) concentrations).  相似文献   
80.

Introduction

The receptor for advanced glycation end-products (RAGE) has been implicated in the pathogenesis of arthritis. We conducted this study to determine the effect of interleukin (IL)-17 on the expression and production of RAGE in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA). The role of nuclear factor-κB (NF-κB) activator 1 (Act1) in IL-17-induced RAGE expression in RA-FLS was also evaluated.

Methods

RAGE expression in synovial tissues was assessed by immunohistochemical staining. RAGE mRNA production was determined by real-time polymerase chain reaction. Act-1 short hairpin RNA (shRNA) was produced and treated to evaluate the role of Act-1 on RAGE production.

Results

RAGE, IL-17, and Act-1 expression increased in RA synovium compared to osteoarthritis synovium. RAGE expression and production increased by IL-17 and IL-1β (*P <0.05 vs. untreated cells) treatment but not by tumor necrosis factor (TNF)-α in RA-FLS. The combined stimuli of both IL-17 and IL-1β significantly increased RAGE production compared to a single stimulus with IL-17 or IL-1β alone (P <0.05 vs. 10 ng/ml IL-17). Act-1 shRNA added to the RA-FLS culture supernatant completely suppressed the enhanced production of RAGE induced by IL-17.

Conclusions

RAGE was overexpressed in RA synovial tissues, and RAGE production was stimulated by IL-17 and IL-1β. Act-1 contributed to the stimulatory effect of IL-17 on RAGE production, suggesting a possible inhibitory target for RA treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号