首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   866篇
  免费   53篇
  国内免费   1篇
  2023年   5篇
  2022年   12篇
  2021年   34篇
  2020年   25篇
  2019年   22篇
  2018年   36篇
  2017年   21篇
  2016年   32篇
  2015年   53篇
  2014年   51篇
  2013年   67篇
  2012年   94篇
  2011年   88篇
  2010年   44篇
  2009年   46篇
  2008年   66篇
  2007年   44篇
  2006年   38篇
  2005年   31篇
  2004年   29篇
  2003年   13篇
  2002年   26篇
  2001年   12篇
  2000年   13篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1988年   2篇
排序方式: 共有920条查询结果,搜索用时 15 毫秒
111.
BackgroundExposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood.PurposeIn this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells.MethodThe human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process.ResultsHyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally, phosphorylation of ERK1/2, p38, and Akt were affected by CHI3L1 knockdown.ConclusionThis study indicates that CHI3L1 is involved in hyperoxia-induced cell death, suggesting that CHI3L1 may be one of several cell death regulators influencing the MAPK and PI3K pathways during oxidative stress in human airway epithelial cells.  相似文献   
112.
113.
Although hepatic expression of cytochrome P450 (CYP) changes markedly in diabetes, the role of ketone bodies in the regulation of CYP in diabetes is controversial. The present study was performed to determine the expression and activity of CYP in non-obese type II diabetic Goto-Kakizaki (GK) rats with normal levels of ketone bodies. In the present study, basal serum glucose levels increased 1.95-fold in GK rats, but acetoacetate and β-hydroxybutyrate levels were not significantly different. Hepatic expression of CYP reductase and CYP3A2 was up-regulated in the GK rats, and consequently, activities of CYP reductase and midazolam 4-hydroxylase, mainly catalyzed by CYP3A2, increased. In contrast, hepatic expression of CYP1A2 and CYP3A1 was down-regulated and the activities of 7-ethoxyresorufin-O-deethylase and 7-methoxyresorufin-O-demethylase, mainly catalyzed by CYP1A, also decreased in GK rats. Hepatic levels of microsomal protein and total CYP and hepatic expression of cytochrome b(5), CYP1B1, CYP2B1 and CYP2C11 were not significantly different between the GK rats and normal Wistar rats. Moreover, the expression and activity of CYP2E1, reported to be up-regulated in diabetes with hyperketonemia, were not significantly different between GK rats and control rats, suggesting that elevation of ketone bodies plays a critical role in the up-regulation of hepatic CYP2E1 in diabetic rats. Our results showed that the expression of hepatic CYP is regulated in an isoform-specific manner. The present results also show that the GK rat is a useful animal model for the pathophysiological study of non-obese type II diabetes with normal ketone body levels.  相似文献   
114.
Microalgae are major primary producers of organic matter in aquatic environments through their photosynthetic activities. Fermented microalga (Pavlova lutheri Butcher) preparation (FMP) is the product of yeast fermentation by Hansenula polymorpha. It was tested for the antioxidant activities including lipid peroxidation inhibitory activity, free‐radical‐scavenging activity, inhibition of reactive oxygen species (ROS) on mouse macrophages (RAW264.7 cell), and inhibited myeloperoxidase (MPO) activity in human myeloid cells (HL60). FMP exhibited the highest antioxidant activity on free‐radical scavenging, inhibitory intracellular ROS, and inhibited MPO activity. MTT [3‐(4,5‐dimethyl‐2‐yl)‐2,5‐diphenyltetrazolium bromide] assay showed no cytotoxicity in mouse macrophages (RAW264.7 cell), human myeloid cells (HL60), and human fetal lung fibroblast cell line (MRC‐5). Furthermore, the antioxidative mechanism of FMP was evaluated by protein expression levels of antioxidant enzyme (superoxide dismutase [SOD] and glutathione [GSH]) using Western blot. The results obtained in the present study indicated that FMP is a potential source of natural antioxidant.  相似文献   
115.
DNA damage in eukaryotic cells induces signaling pathways mediated by the ATM, p53 and ERK proteins, but the interactions between these pathways are not completely known. To address this issue, we performed a time course analysis in human embryonic fibroblast cells treated with DNA-damaging agents. DNA damage induced the phosphorylation of p53 at Ser 15 (p-p53) and the phosphorylation of ERK (p-ERK). Inhibition of p53 by a dominant negative mutant or in p53(-/-) fibroblast cells abolished ERK phosphorylation. ERK inhibitor prevented p53 phosphorylation, indicating that phosphorylations of p53 and p-ERK are interdependent each other. A time course analysis showed that ATM interacted with p-p53 and p-ERK in early time (0.5 h) and interaction between ATM-bound p-p53 and p-ERK or ATM-bound p-ERK and p-p53 occurred in late time (3 h) of DNA damage. These results indicate that ATM mediates interdependent activation of p53 and ERK through formation of a ternary complex between p-p53 and p-ERK in response to DNA damage to cause growth arrest.  相似文献   
116.
This study was aimed to search new genetic variants in the bovine FABP4 gene as molecular markers for meat quality and carcass traits. PCR–RFLP analysis revealed that three SNPs located at nucleotide positions g.2834C>G, g.3533T>A, and g.3691G>A were identified based on a GenBank accession number (NC_007312.4). Sequence analysis revealed that SNPs were located in intron 1 (g.2834C>G) and 2 (g.3533T>A), and an exon 3 (g.3691G>A), showing allele frequencies as 0.592, 0.579, and 0.789, respectively. Genetic variabilities of heterozygosity (He) and polymorphic information contents (PIC) were estimated for g.2834C>G (0.608 and 0.531), g.3533T>A (0.615 and 0.539), and g.3691G>A (0.498 and 0.401) loci, respectively. A SNP located in the exon 3 of FABP4 was characterized and associated with desirable increases of MS (marbling scores) and MG (meat quality grades) in Hanwoo. The statistical analysis revealed that additive effects by GG genotypes in g.3691G>A SNP were significantly greater than AA genotypes in MS and MG traits. These findings suggest that the FABP4g.3691G>A SNP will be a useful candidate locus to maximize economic benefits for cattle populations.  相似文献   
117.
Bacterial cyclic nucleotide gated (bCNG) channels are generally a nonmechanosensitive subset of the mechanosensitive channel of small conductance (MscS) superfamily. bCNG channels are composed of an MscS channel domain, a linking domain, and a cyclic nucleotide binding domain. Among bCNG channels, the channel domain of Ss-bCNGa, a bCNG channel from Synechocystis sp. PCC 6803, is most identical to Escherichia coli (Ec) MscS. This channel also exhibits limited mechanosensation in response to osmotic downshock assays, making it the only known full-length bCNG channel to respond to hypoosmotic stress. Here, we compare and contrast the ability of Ss-bCNGa to gate in response to mechanical tension with Se-bCNG, a nonmechanosensitive bCNG channel, and Ec-MscS, a prototypical mechanosensitive channel. Compared with Ec-MscS, Ss-bCNGa only exhibits limited mechanosensation, which is most likely a result of the inability of Ss-bCNGa to form the strong lipid contacts needed for significant function. Unlike Ec-MscS, Ss-bCNGa displays a mechanical response that increases with protein expression level, which may result from channel clustering driven by interchannel cation?C?? interactions.  相似文献   
118.
119.
Paik H  Kim J  Lee S  Heo HS  Hur CG  Lee D 《Molecules and cells》2012,33(4):351-361
The identification of true causal loci to unravel the statistical evidence of genotype-phenotype correlations and the biological relevance of selected single-nucleotide polymorphisms (SNPs) is a challenging issue in genome-wide association studies (GWAS). Here, we introduced a novel method for the prioritization of SNPs based on p-values from GWAS. The method uses functional evidence from populations, including phenotype-associated gene expressions. Based on the concept of genetic interactions, such as perturbation of gene expression by genetic variation, phenotype and gene expression related SNPs were prioritized by adjusting the p-values of SNPs. We applied our method to GWAS data related to drug-induced cytotoxicity. Then, we prioritized loci that potentially play a role in druginduced cytotoxicity. By generating an interaction model, our approach allowed us not only to identify causal loci, but also to find intermediate nodes that regulate the flow of information among causal loci, perturbed gene expression, and resulting phenotypic variation.  相似文献   
120.
In this study, we characterized a putative peroxidase Prx1 of Candida albicans by: 1) demonstrating the thioredoxin-linked peroxidase activity with purified proteins, 2) examining the sensitivity to several oxidants and the accumulation of intracellular reactive oxygen species with a null mutant (prx1Δ), a mutant (C69S) with a point mutation at Cys69, and a revertant, and 3) subcelluar localization. Enzymatic assays showed that Prx1 is a thioredoxin-linked peroxidase which reduces both hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BOOH). Compared with two other strong H2O2 scavenger mutants for TSA1 and CAT1, prx1Δ and C69S were less sensitive to H2O2, menadione and diamide at all concentrations tested, but were more sensitive to low concentration of t-BOOH. Intracellular reactive oxygen species accumulated in prx1Δ and C69S cells treated with t-BOOH but not H2O2. These results suggest that peroxidase activity of Prx1 is specified to t-BOOH in cells. In both biochemical and physiological cases, the evolutionarily conserved Cys69 was found to be essential for the function. Immunocytochemical staining revealed Prx1 is localized in the cytosol of yeast cells, but is translocated to the nucleus during the hyphal transition, though the significances of this observation are unclear. Our data suggest that PRX1 has a thioredoxin peroxidase activity reducing both t-BOOH and H2O2, but its cellular function is specified to t-BOOH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号