首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3051篇
  免费   200篇
  国内免费   137篇
  2024年   6篇
  2023年   56篇
  2022年   126篇
  2021年   246篇
  2020年   169篇
  2019年   212篇
  2018年   193篇
  2017年   134篇
  2016年   198篇
  2015年   255篇
  2014年   334篇
  2013年   328篇
  2012年   314篇
  2011年   277篇
  2010年   138篇
  2009年   105篇
  2008年   103篇
  2007年   77篇
  2006年   41篇
  2005年   34篇
  2004年   20篇
  2003年   9篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1994年   2篇
  1988年   1篇
  1959年   2篇
排序方式: 共有3388条查询结果,搜索用时 281 毫秒
211.
Accumulating evidences have proved that dysregulation of microRNAs (miRNAs) is involved in cancer initiation and progression. In this study, we showed that miRNA-145 level was significantly decreased in hepatocellular cancer (HCC) tissues and cell lines, and its low expression was inversely associated with the abundance of insulin receptor substrate 1 (IRS1), a key mediator in oncogenic insulin-like growth factor (IGF) signaling. We verified IRS1 as a direct target of miR-145 using Western blotting and luciferase reporter assay. Further, the restoration of miR-145 in HCC cell lines suppressed cancer cell growth, owing to down-regulated IRS1 expression and its downstream Akt/FOXO1 signaling. Our results demonstrated that miR-145 could inhibit HCC through targeting IRS1 and its downstream signaling, implicating the loss of miR-145 regulation may be a potential molecular mechanism causing aberrant oncogenic signaling in HCC.  相似文献   
212.
C–C chemokine receptor 7 (CCR7) and its ligands CCL19 contributes to the directional migration of certain cancer cell lines, but its role in the migration of BMSCs remains vague. The aim of this study was to determine the possible interaction between CCL19-induced conditions and matrix metalloproteinases-9 (MMP9) expression in BMSCs. Cell migration using Transwell assay indicated that activation of CCR7 by its specific ligand, exogenous chemokine ligand 19 (CCL19), was associated with a significant linear increase. Western blot and real-time PCR indicated that CCL19/CCR7 significantly upregulated expression of MMP9, which is related to metastasis-associated genes. The CCL19/CCR7 interaction significantly enhanced phosphorylation of Akt, as measured by Western blot. P-Akt and MMP9 protein expression exhibited a time-dependent pattern, and the peak was at 48 h. LY294002 significantly abolished the effects of exogenous CCL19. These results suggest that CCL19/CCR7 contributes to the migration of BMSCs by upregulating MMP9 potentially via the PI3K/Akt pathway.  相似文献   
213.
Single molecule fitting-based superresolution microscopy achieves sub-diffraction-limit image resolution but suffers from a need for long acquisition times to gather enough molecules. Several methods have recently been developed that analyze high molecule density images but most are only applicable to two dimensions. In this study, we implemented a high-density superresolution localization algorithm based on compressed sensing and a biplane approach that provides three-dimensional information about molecules, achieving super-resolution imaging at higher molecule densities than those achieved using the conventional single molecule fitting method.  相似文献   
214.
Rap1GAP expression is decreased in human tumors. The significance of its downregulation is unknown. We show that Rap1GAP expression is decreased in primary colorectal carcinomas. To elucidate the advantages conferred on tumor cells by loss of Rap1GAP, Rap1GAP expression was silenced in human colon carcinoma cells. Suppressing Rap1GAP induced profound alterations in cell adhesion. Rap1GAP-depleted cells exhibited defects in cell/cell adhesion that included an aberrant distribution of adherens junction proteins. Depletion of Rap1GAP enhanced adhesion and spreading on collagen. Silencing of Rap expression normalized spreading and restored E-cadherin, β-catenin, and p120-catenin to cell/cell contacts, indicating that unrestrained Rap activity underlies the alterations in cell adhesion. The defects in adherens junction protein distribution required integrin signaling as E-cadherin and p120-catenin were restored at cell/cell contacts when cells were plated on poly-l-lysine. Unexpectedly, Src activity was increased in Rap1GAP-depleted cells. Inhibition of Src impaired spreading and restored E-cadherin at cell/cell contacts. These findings provide the first evidence that Rap1GAP contributes to cell/cell adhesion and highlight a role for Rap1GAP in regulating cell/matrix and cell/cell adhesion. The frequent downregulation of Rap1GAP in epithelial tumors where alterations in cell/cell and cell/matrix adhesion are early steps in tumor dissemination supports a role for Rap1GAP depletion in tumor progression.Mammalian Rap proteins Rap1a/b and Rap2a/b/c are members of the Ras superfamily of small GTPases. Rap proteins are active when bound to GTP and inactive when bound to GDP. Cellular Rap activity is regulated by the concerted action of guanine nucleotide exchange factors that activate Rap (RapGEFs) and Rap-specific GTPase-activating proteins (RapGAPs) that inactivate Rap (reviewed in reference 10). The Rap1GAP family is composed of several members, including Rap1GAP, Rap1GAPII, Spa-1/SIPA1, and E6TP1/SIPA1L1. Several lines of evidence suggest that RapGAPs function as tumor and/or invasion suppressors. Downregulation of E6TP1 by human papillomavirus protein E6 contributes to cervical cancer (20, 21), and Spa-1 deficiency in mice induces a spectrum of myelodysplastic disorders similar to chronic myelogenous leukemia (26). The SPA1 gene was identified as a candidate for the metastasis efficiency modifier locus in mice (38). Although the relevance of this observation to humans is not yet clear, single-nucleotide polymorphisms in the SPA1 gene in human breast tumors have been associated with lymph node involvement and poor survival (15). Intriguingly, Spa-1 interacts with Brd4 (18) and Rrp-1b (13), the protein products of genes associated with patterns of extracellular matrix protein gene expression characteristic of metastatic tumors (14).The RAP1GAP gene maps to 1p35-36, a chromosomal region subject to copy number alterations in human tumors (36, 49). Rap1GAP protein levels are decreased in pancreatic adenocarcinomas (53), papillary thyroid carcinomas (37, 47, 57), and melanomas (56). Rap1GAP downregulation has been shown to arise as a consequence of proteasomal degradation (46), loss of heterozygosity (37, 53), and promoter methylation (56, 57). Mutations of unknown significance in RAP1GAP have been identified in breast cancer (42). Although downregulation of Rap1GAP is frequent in human tumors, the functional significance of decreased Rap1GAP expression is unknown. Up to now, studies assessing the role of Rap1GAP in tumor cells have relied exclusively on overexpression experiments. Overexpression of Rap1GAP in oropharyngeal squamous cell (54) and pancreatic (53) carcinoma lines impaired tumor formation in mouse xenograft models. In vitro, overexpression of Rap1GAP impaired tumor cell proliferation (34, 47, 53, 54, 56) and enhanced apoptosis (34, 53, 56). In some instances, overexpression of Rap1GAP inhibited tumor cell migration and invasion (3, 47, 53, 56), while in others, it enhanced invasion (34). While these studies provide insight into cellular processes that can be deregulated by overexpression, they do not assess the significance of depletion of endogenous Rap1GAP in human tumors.Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. The majority of CRC deaths arise as a consequence of distant metastases, most frequently to the liver. While the genetic basis of CRC is well understood (19, 48), less is known about the events that trigger the transition to metastatic disease. We report that Rap1GAP is highly expressed in normal colonic epithelium and that its expression is profoundly decreased in primary colorectal carcinomas. As one strategy to assess the significance of Rap1GAP depletion, the expression of Rap1GAP was silenced in human colon carcinoma cells. Silencing of Rap1GAP induced marked increases in Rap1 and Rap2 activity, the first evidence that Rap1GAP is an essential negative regulator of Rap GTPases in colon cancer. Rap1 regulates inside-out signaling through integrins (reviewed in references 8, 9, and 11) and is a target of outside-in signaling via cadherins (reviewed in reference 30). Downregulation of Rap1GAP induced profound alterations in cell/matrix and cell/cell adhesion. Suppressing Rap1GAP expression enhanced adhesion and spreading on collagen. Unexpectedly, based on the role of Rap1 in promoting cell/cell adhesion, silencing of Rap1GAP impaired cell/cell adhesion. These findings demonstrate a requirement for regulated Rap activity in the maintenance of epithelial cell structure and demonstrate a heretofore unappreciated role for Rap1GAP in the regulation of cell/cell adhesion. As the dissemination of tumor cells requires the weakening of cell/cell adhesion and an enhanced ability to adhere to collagen-rich interstitial matrices, our studies identify a potential mechanism through which loss of Rap1GAP contributes to tumor progression.  相似文献   
215.
216.
The phytohormone auxin is important in various aspects of organism growth and development. Aux/IAA genes encoding short-lived nuclear proteins are responsive primarily to auxin induction. Despite their physiological importance, systematic analysis of Aux/IAA genes in maize have not yet been reported. In this paper, we presented the isolation and characterization of maize Aux/IAA genes in whole-genome scale. A total of 31 maize Aux/IAA genes (ZmIAA1 to ZmIAA31) were identified. ZmIAA genes are distributed in all the maize chromosomes except chromosome 2. Aux/IAA genes expand in the maize genome partly due to tandem and segmental duplication events. Multiple alignment and motif display results revealed major maize Aux/IAA proteins share all the four conserved domains. Phylogenetic analysis indicated Aux/IAA family can be divided into seven subfamilies. Putative cis-acting regulatory DNA elements involved in auxin response, light signaling transduction and abiotic stress adaption were observed in the promoters of ZmIAA genes. Expression data mining suggested maize Aux/IAA genes have temporal and spatial expression pattern. Collectively, these results will provide molecular insights into the auxin metabolism, transport and signaling research.  相似文献   
217.
Porphyra haitanensis is one of the most economical nutritive marine algae; however, its production and quality are significantly jeopardized by high temperatures. Selection of heat-resistant strains will greatly reduce the economic risks and benefit to the nori industry. Three previously isolated and improved strains with a high yield were screened at 28°C and identified, of which one strain, ZS-1, showed significantly improved heat tolerance. Upon further characterizing of the cultures of the ZS-1 strain and the wild-type (WT) strain at 28°C and 30°C, the ZS-1 conchospore germlings survived at rates of 69.9% and 59.6%, while the WT conchospore germlings survived at significantly lower rates of 15.9% and 6.7%, respectively, over a period of 15 days. Furthermore, ZS-1 conchospore germlings divided at significantly higher rates of 100% and 88.6% compared to the WT conchospore germlings with 90.4% and 63.8%, respectively. When the 35-day-old conchospore germlings were transferred from the optimal temperature of 24°C to higher temperatures of 28°C and 30°C, the ZS-1 blades sustained growth over a 25-day period without decay and increase of blade lengths with a factor of 18.5 and 10.3 times, respectively. The blade lengths of the WT germlings only increased by a factor of 1.7 and 0.9 times and began to decay after being cultured for 15 days at 28°C and 30°C. At 24, 28, and 30°C, the ZS-1 blades grew 3.4, 8.6, and 8.0 times faster than those of the WT. Evidently, ZS-1 is a fast-growing and heat-resistant strain compared to the WT strain and may offer an alternative for the nori industry.  相似文献   
218.
219.
Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilized embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo.  相似文献   
220.
Berberine, a plant alkaloid used in traditional Chinese medicine, has a wide spectrum of pharmacological actions, but the poor bioavailability limits its clinical use. The present aim was to observe the effects of sodium caprate on the intestinal absorption and antidiabetic action of berberine. The in situ, in vitro, and in vivo models were used to observe the effect of sodium caprate on the intestinal absorption of berberine. Intestinal mucosa morphology was measured to evaluate the toxic effect of sodium caprate. Diabetic model was used to evaluate antidiabetic effect of berberine coadministrated with sodium caprate. The results showed that the absorption of berberine in the small intestine was poor and that sodium caprate could significantly improve the poor absorption of berberine in the small intestine. Sodium caprate stimulated mucosal-to-serosal transport of berberine; the enhancement ratios were 2.08, 1.49, and 3.49 in the duodenum, jejunum, and ileum, respectively. After coadministration, the area under the plasma concentration–time curve of berberine was increased 28% than that in the absence of sodium caprate. Furthermore, both berberine and coadministration with sodium caprate orally could significantly decrease fasting blood glucose and improve glucose tolerance in diabetic rats (P?P?相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号