首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   19篇
  2024年   2篇
  2023年   3篇
  2022年   6篇
  2021年   10篇
  2020年   10篇
  2019年   13篇
  2018年   18篇
  2017年   13篇
  2016年   11篇
  2015年   23篇
  2014年   25篇
  2013年   31篇
  2012年   39篇
  2011年   32篇
  2010年   24篇
  2009年   15篇
  2008年   14篇
  2007年   15篇
  2006年   24篇
  2005年   6篇
  2004年   11篇
  2003年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1990年   3篇
  1989年   3篇
  1986年   1篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1978年   1篇
排序方式: 共有385条查询结果,搜索用时 31 毫秒
31.
Red blood cells (RBCs) during microcirculation, aging and storage, lose N-acetylneuraminic acid (NANA) and other biomaterials thereby altering cell structures, some properties and functions. Such cell damage very likely underlies the serious adverse effects of blood transfusion. However, a controversy has remained since 1961-1977 as to whether with aging, the RBCs, suffering loss of NANA, do have a decreased charge density. Any correlation between the changes in the cell properties with cell aging is also not clear. Therefore, to remove the ambiguity and uncertainty, we carried out multiparameteric studies on Percoll fractions of blood of 38 volunteers (lightest-young-Y-RBCs, densest-old-O-RBCs, two middle fractions).We found that there were striking differences between the properties of Y-RBCs and O-RBCs. The ζ-potential of Y-RBCs decreased gradually with aging. Studies in parallel on RBC fractions incubated with both positively charged quantum dots and Sambucus Nigra-fluorescein isothiocyanate (FITC) along with their ζ-potentials provide for the first time direct visual evidence about the lesser amount of charge density and NANA on O-RBCs, and a collinear decrease in their respective ζ-potentials. Close correlation was found between the surface charge on an aging RBC and its structure and functions, from the cell morphology, the membrane deformability to the intracellular Hb structure and oxidation ability. This quantitative approach not only clarifies the picture but also has implications in biology and medicine.  相似文献   
32.
33.
Bacteriorhodopsin (BR) is an integral membrane protein found in "purple membrane" (the Archaea cell membrane) mainly in Halobacteria. This protein absorbs green light (wavelength 500-650 nm, with the absorption maximum at 568 nm) and converts it into an electrochemical gradient. This gradient in turn is used for ATP production. The ability of BR to convert light energy into chemical energy or sunlight into electricity has been used in different applications mainly optical appliances but also for therapeutic/medical applications and research. This review surveys some of these applications that have been patented in the last five years.  相似文献   
34.
The ubiquitin proteasome system (UPS) is a major cellular protein degradation pathway that involves the modulation of key proteins controlling inflammation, cell cycle regulation and gene expression. Modulation of the UPS with proteasome inhibitors has indicated efficacy in the treatment of several disease states including cancer and neuro-inflammatory disorders. In particular, a series of recent reports have evaluated the pre-clinical efficacy of the proteasome inhibitor MLN519 for the treatment of focal ischemic/reperfusion brain injury in rats. Evidence from these studies indicate that the neuroprotection provided by MLN519 is related to an anti-inflammatory effect linked to the modulation of nuclear factor kappaB (NF-kappaB) activity, attenuation of cytokine (TNF-alpha, IL-1beta, and IL-6) and cellular adhesion molecule (ICAM-1 and E-selectin) expression, and reduction of neutrophil and macrophage infiltration into the injured rat brain. It is the aim of this paper to review the experimental neuroprotection data reported using MLN519 with a focus on the molecular and cellular mechanisms of anti-inflammatory action.  相似文献   
35.
36.
We have purified a fimbrial shaft protein (MrxA) of Xenorhabdus nematophila. The soluble monomeric protein lysed larval hemocytes of Helicoverpa armigera. Osmotic protection of the cells with polyethylene glycol suggested that the 17-kDa MrxA subunit makes pores in the target cell membrane. The internal diameter of the pores was estimated to be >2.9 nm. Electron microscopy confirmed the formation of pores by the fimbrial subunit. MrxA protein oligomerized in the presence of liposomes. Electrophysiological studies demonstrated that MrxA formed large, voltage-gated passive-diffusion channels in lipid bilayers.  相似文献   
37.
This article presents theoretical analysis and experimental data for the use of resonant waveguide grating (RWG) biosensors to characterize stimulation-mediated cell responses including signaling. The biosensor is capable of detecting redistribution of cellular contents in both directions that are perpendicular and parallel to the sensor surface. This capability relies on online monitoring cell responses with multiple optical output parameters, including the changes in incident angle and the shape of the resonant peaks. Although the changes in peak shape are mainly contributed to stimulation-modulated inhomogeneous redistribution of cellular contents parallel to the sensor surface, the shift in incident angle primarily reflects the stimulation-triggered dynamic mass redistribution (DMR) perpendicular to the sensor surface. The optical signatures are obtained and used to characterize several cellular processes including cell adhesion and spreading, detachment and signaling by trypsinization, and signaling through either epidermal growth factor receptor or bradykinin B2 receptor. A mathematical model is developed to link the bradykinin-mediated DMR signals to the dynamic relocation of intracellular proteins and the receptor internalization during B2 receptor signaling cycle. This model takes the form of a set of nonlinear, ordinary differential equations that describe the changes in four different states of B2 receptors, diffusion of proteins and receptor-protein complexes, and the DMR responses. Classical analysis shows that the system converges to a unique optical signature, whose dynamics (amplitudes, transition time, and kinetics) is dependent on the bradykinin signal input, and consistent with those observed using the RWG biosensors. This study provides fundamentals for probing living cells with the RWG biosensors, in general, optical biosensors.  相似文献   
38.
Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is a major fungal disease of tomato (Solanum lycopersicum L.). Xylem sap protein 10 (XSP10) and Salicylic acid methyl transferase (SlSAMT) have been identified as putative negative regulatory genes associated with Fusarium wilt of tomato. Despite their importance as potential genes for developing Fusarium wilt disease tolerance, very little knowledge is available about their expression, cell biology, and functional genomics. Semi-quantitative and quantitative real-time PCR expression analysis of XSP10 and SlSAMT, in this study, revealed higher expression in root and flower tissue respectively in different tomato cultivars viz. Micro-Tom (MT), Arka Vikas (AV), and Arka Abhed (AA). Therefore, the highly up-regulated expression of XSP10 and SlSAMT in biotic stress susceptible tomato cultivar (AV) than a multiple disease resistant cultivar (AA) suggested the disease susceptibility nature of these genes for Fusarium wilt. Sub-cellular localization analysis through the expression of gateway cloning constructs in tomato protoplasts and seedlings showed the predominant localization of XSP10 in the nucleus and SlSAMT at the cytoplasm. A strong in vivo protein–protein interaction of XSP10 with SlSAMT at cytoplasm from bi-molecular fluorescent complementation study suggested that these two proteins function together in regulating responses to Fusarium wilt tolerance in tomato.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01025-y.  相似文献   
39.
Singhal S  Chand P  Singh BP  Singh SV  Rao J  Shankar R  Kumar S 《Gerodontology》2012,29(2):e1059-e1066
doi: 10.1111/j.1741‐2358.2011.00610.x The effect of osteoporosis on residual ridge resorption and masticatory performance in denture wearers Aim: To compare masticatory performance, masticatory efficiency and residual ridge resorption (RRR) in osteoporotic and non‐osteoporotic edentulous subjects after rehabilitation with complete dentures. Method: Thirty subjects fulfilling the inclusion criteria were enrolled from the patients visiting the Department of Prosthodontics for complete denture fabrication. Two groups consisting of control subjects (group I; N = 15) and osteoporotic subjects (group II; N = 15) were formed. Complete dentures satisfying certain criteria were fabricated for both groups. Masticatory performance and efficiency were measured 6 months after denture insertion. Areal measurements were taken on lateral cephalograms before and 6 months after denture fabrication. The data were then computed to analyse differences between groups I and II using SPSS statistical software version 15.0. Results: Six months after denture fabrication, the masticatory performance and efficiency were significantly higher (p < 0.001) for group I, with a significant decrease in maxillary and mandibular sagittal area seen in both groups. The rate of bone loss was more in group II compared with group I. Conclusion: Greater masticatory function was demonstrated by the non‐osteoporotic group, and the rate of RRR was more in the osteoporotic group compared with the normal group. In this pilot study, osteoporosis leads to greater RRR, decreased masticatory performance and efficiency in edentulous subjects 6 months after denture insertion. Screening for osteoporosis is suggested as a routine procedure for all edentulous subjects undergoing rehabilitation. Recall check‐ups for osteoporotic patients should be more frequent, and these patients may require more frequent denture remakes.  相似文献   
40.
doi: 10.1111/j.1741‐2358.2010.00414.x Effect of bone mineral density on masticatory performance and efficiency Objective: To evaluate the effect of bone mineral density (BMD) on masticatory performance and efficiency in dentate subjects. Background data: Osteoporosis is the most common disorder of the bone. It causes reduction in BMD of the all the skeletal tissue including jaw bones. It also promotes bone loss in jaw bones. In osteoporosis, a reduction of maximal bite force and greater electromyography activity of masticatory muscles is documented. This may lead to the development of masticatory dysfunction which can be assessed by a chewing test in the form of change in masticatory performance and efficiency. Materials and methods: Sixty subjects with equal numbers of men and women were selected for the study, in which BMD screening (T‐score) was carried out to identify the normal, osteopenic and osteoporotic subjects. Their masticatory performance and efficiency was evaluated by a chewing test (fractional sieving method). Results: A high ‘T’ score was associated with low masticatory efficiency and a low ‘T’ score with high masticatory efficiency. Masticatory performance and efficiency was significantly higher among males as compared to females with similar range of BMD. Conclusion: In both genders, high BMD groups (low ‘T’ score) had a significantly high percentage of masticatory efficiency compared to the low BMD (high ‘T’ score) group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号