首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   7篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   15篇
  2014年   13篇
  2013年   9篇
  2012年   19篇
  2011年   11篇
  2010年   8篇
  2009年   4篇
  2008年   5篇
  2007年   10篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有145条查询结果,搜索用时 109 毫秒
141.
As an alternative to pharmacological treatment to diseases, lifestyle interventions, such as dietary changes and physical activities, can help maintain healthy metabolic conditions. Recently, the emerging analyses of volatile organic compounds (VOCs) from breath and short-chain fatty acids (SCFAs) from plasma/feces have been considered as useful tools for the diagnosis and mechanistic understanding of metabolic diseases. Furthermore, diet-induced changes of SCFAs in individuals with diagnosed metabolic abnormalities have been correlated with the composition changes of the gut microbiome. More interestingly, the analysis of exhaled breath (breathomics) has gained attention as a useful technique to measure the human VOC profile altered as a result of dietary interventions. In this mini-review, we examined recent clinical trials that performed promising dietary interventions, SCFAs analysis in plasma/feces, and VOC profile analysis in exhaling breath to understand the relationship between dietary intervention and metabolic health.  相似文献   
142.
Janus microparticles are compartmentalized particles with differing molecular structures and/or functionality on each of their two sides. Because of this unique property, Janus microparticles have been recognized as a new class of materials, thereby attracting a great deal of attention from various research fields. The versatility of these microparticles has been exemplified through their uses as building blocks for self-assembly, electrically responsive actuators, emulsifiers for painting and cosmetics, and carriers for drug delivery. This study introduces a detailed protocol that explicitly describes a synthetic method for designing novel Janus microhydrogels composed of a single base material, poly(N-isopropylacrylamide) (PNIPAAm). Janus microdroplets are firstly generated via a hydrodynamic focusing microfluidic device (HFMD) based on the separation of a supersaturated aqueous NIPAAm monomer solution and subsequently polymerized through exposure to UV irradiation. The resulting Janus microhydrogels were found to be entirely composed of the same base material, featured an easily identifiable compartmentalized morphology, and exhibited anisotropic thermo-responsiveness and organophilic/hydrophilic loading capability. We believe that the proposed method introduces a novel hydrogel platform with the potential for advanced synthesis of multi-functional Janus microhydrogels.  相似文献   
143.
144.
Chicken embryonic retina is an excellent tool to study retinal development in higher vertebrates. Because of large size and external development, it is comparatively very easy to manipulate the chick embryonic retina using recombinant DNA/RNA technology. Electroporation of DNA/RNA constructs into the embryonic retina have a great advantage to study gene regulation in retinal stem/progenitor cells during retinal development. Different type of assays such as reporter gene assay, gene over-expression, gene knock down (shRNA) etc. can be performed using the electroporation technique. This video demonstrates targeted retinal injection and in ovo electroporation into the embryonic chick retina at the Hamburger and Hamilton stage 22-23, which is about embryonic day 4 (E4). Here we show a rapid and convenient in ovo electroporation technique whereby a plasmid DNA that expresses green fluorescent protein (GFP) as a marker is directly delivered into the chick embryonic subretinal space and followed by electric pulses to facilitate DNA uptake by retinal stem/progenitor cells. The new method of retinal injection and electroporation at E4 allows the visualization of all retinal cell types, including the late-born neurons1, which has been difficult with the conventional method of injection and electroporation at E1.52.  相似文献   
145.
A series of anthroyloxy fatty acid (AF) fluorescent probes, with the anthroyloxy group covalently linked at various positions along the alkyl chain, were studied in solvents exhibiting a wide range of polarity and hydrogen-bond donor (Hd) and acceptor (Ha) ability. These probes were sensitive to the solvent polarity as reflected by the Stokes' shift observed in steady state fluorescence. As determined by multi-linear regression analysis of the observed Stokes' shift and solvent parameters, such as orientation polarizability (Δf), Hd and Ha of the solvents, all the probes were sensitive to the Hd of solvents but were not affected by the Ha of solvents except the 2-AF. Due to the proximity of the polar headgroup to the fluorophore, it appears that some intramolecular hydrogen-bonding is present in 2-AF, an interaction that is sensitive to the pH of the solvent, but is less sensitive to the Hd and Ha of the solvents. Fluorescence lifetimes measured by the multi-frequency phase-modulation technique in mixtures of hexane and ethanol reflect a modified Stern-Volmer behavior suggesting the second solvent, ethanol, specifically interacts with the probe, in part through collisional quenching. Also, the lifetime data were sensitive to very low concentrations of the second solvent (0–0.1%, by vol.). The results from this study provide insight into the intrinsic differences between the different AF positions that must be taken into consideration while investigating the dynamics of lipid bilayer systems. Moreover, this study illustrates the utility and resolving power of lifetime based measurements needed for the interpretation of heterogeneous biophysical environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号