首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
  国内免费   5篇
  2024年   2篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
21.
大气氮沉降增加生态系统氮有效性,优势种植物对不同水平氮输入的响应影响草原生态系统结构和功能。研究设置4个氮添加水平,分析内蒙古温带草原优势种大针茅(Stipa grandis)光合生理特性对不同梯度氮添加的响应。结果表明:低氮(0-2 g m-2 a-1)处理时,大针茅叶片氮含量较低,叶绿素含量和1,5-二磷酸核酮糖羧化/加氧酶的活性不高,光能利用效率低,导致光系统II出现过剩激发能,光合器官受到抑制,净光合速率相对较低。适量氮添加(5-10 g m-2 a-1)提高了大针茅叶片羧化系统和电子传递系统的氮分配,进而提高了1,5-二磷酸核酮糖羧化/加氧酶的活性以及电子传递速率,净光合速率增大。高氮(25 g m-2 a-1)处理时,叶片氮含量较高,但光合氮分配比例下降,降低了光合氮利用效率。大针茅光抑制程度增大,叶绿素含量、1,5-二磷酸核酮糖羧化/加氧酶的活性下降,不利于生物量积累。研究结果有助于进一步了解全球变化背景下草原生态系统优势种的生理响应机制,并为草原的可持续发展提供一定的理论依据。  相似文献   
22.
Flavonoids are plant secondary metabolites that contribute to the adaptation of plants to environmental stresses, including resistance to abiotic and biotic stress. Flavonoids are also beneficial for human health and depress the progression of some chronic diseases. The biosynthesis of flavonoids, which belong to a large family of phenolic compounds, is a complex metabolic process with many pathways that produce different metabolites, controlled by key enzymes. There is limited knowledge about the composition, biosynthesis and regulation of flavonoids in cereals. Improved understanding of the accumulation of flavonoids in cereal grains would help to improve human nutrition through these staple foods. The biosynthesis of flavonoids, scope for altering the flavonoid composition in cereal crops and benefits for human nutrition are reviewed here.  相似文献   
23.
Interleukin‐8 (IL‐8), as an inflammatory chemokine, has been previously shown to contribute to tumorigenesis in several malignancies including the ovarian cancer. However, little is known about how IL‐8 promotes the metastasis and invasion of ovarian cancers cells. In this study, we found that IL‐8 and its receptors CXCR1 and CXCR2 were up‐regulated in advanced ovarian serous cancer tissues. Furthermore, the level of IL‐8 and its receptors CXCR1 and CXCR2 expression were associated with ovarian cancer stage, grade and lymph node metastasis. In vitro, IL‐8 promoted ovarian cancer cell migration, initiated the epithelial‐mesenchymal transition (EMT) program and activated Wnt/β‐catenin signalling. However, when treated with Reparixin (inhibitor of both IL‐8 receptors CXCR1 and CXCR2), effect of both endogenous and exogenous IL‐8 was reversed. Together, our results indicated that IL‐8 triggered ovarian cancer cells migration partly through Wnt/β‐catenin pathway mediated EMT, and IL‐8 may be an important molecule in the invasion and metastasis of ovarian cancer.  相似文献   
24.

Background and aims

As an essential mineral element, selenium (Se) plays a critical role in human health. Given the low concentrations (<100 mg Se kg–1) of Se in staple crops, the identification of genetic resources with enriched Se, as well as the genes controlling Se concentration, is valuable for the marker-assisted selection of Se-rich varieties.

Methods

We determined the chromosomal quantitative trait (QTL) for Se concentration over two consecutive plant growth cycles using recombinant inbred lines (RILs) treated with two different concentrations of Se under both field-grown and hydroponic conditions.

Results

Several QTL for Se concentration were detected across the different treatments. Significant genotypic variation in the tissues of the RIL was found at Se-deficicencycondition. Notably, a QTL located on 3D (interval 214.00–218.00, Qse.sau-3D) affected root length and Se concentration in the leaves and grains, suggesting the existence of the same allele with distinctly different functions. However, the QTL for the agronomic traits measured (plant height, flowering time, and tillering number) and Se concentration were not found to be located on the same chromosomal regions, suggesting that marker-assisted selection for both traits is feasible. Se concentrations in the grains were primarily determined by the mineral transport efficiency of the lines, and the line with the highest Se concentration in the grains always possessed larger, more fibrous root systems. The concentrations of Se in the plant tissues were in the order of: root > stem > grain.

Conclusions

This is the first study to document a Se-rich synthetic wheat line, and root structure and Se grain concentration was strongly affected by QTL located on 3D.
  相似文献   
25.
Wheat was introduced to China approximately 4500 years ago, where it adapted over a span of time to various environments in agro‐ecological growing zones. We investigated 717 Chinese and 14 Iranian/Turkish geographically diverse, locally adapted wheat landraces with 27 933 DArTseq (for 717 landraces) and 312 831 Wheat660K (for a subset of 285 landraces) markers. This study highlights the adaptive evolutionary history of wheat cultivation in China. Environmental stresses and independent selection efforts have resulted in considerable genome‐wide divergence at the population level in Chinese wheat landraces. In total, 148 regions of the wheat genome show signs of selection in at least one geographic area. Our data show adaptive events across geographic areas, from the xeric northwest to the mesic south, along and among homoeologous chromosomes, with fewer variations in the D genome than in the A and B genomes. Multiple variations in interdependent functional genes such as regulatory and metabolic genes controlling germination and flowering time were characterized, showing clear allelic frequency changes corresponding to the dispersion of wheat in China. Population structure and selection data reveal that Chinese wheat spread from the northwestern Caspian Sea region to South China, adapting during its agricultural trajectory to increasingly mesic and warm climatic areas.  相似文献   
26.
Sheepgrass [Leymus chinensis (Trin.) Tzvel] is a valuble forage plant highly significant to regional grassland productivity of Euro-Asia steppes. Although effects of environmental stress including drought have been studied, impact of nutrient deficiency in particular phosphate (Pi), one of the essential macronutrient, is not reported. Here, we investigated low-Pi effect on its photosynthetic apparatus via physiological and biochemical analysis. We show that PSII activity was significantly reduced based on chlorophyll fluorescence measurements. We observed decreased amount of core proteins of PSII by immunoblot analysis. Further analysis of thylakoid membranes using 2D-BN/SDS-PAGE and immunoblot detection demonstrated that the amount of PSII complexes was closely correlated with the Pi levels within the range. Together with reduced number of thylakoid grana stackings observed, we suggest that the maintenance of PSII is impaired under Pi-limited condition. Moreover, enzyme activity assays revealed that the activity of several ROS scavenger enzymes was stimulated by low-Pi treatment. Based on these experimental results we conclude that PSII is the component of photosynthetic apparatus most sensitive to Pi supply and the enhanced anti-ROS activity is mainly subjective to protection of PSII against low Pi-induced photo-oxidative stress in the organism.  相似文献   
27.
季节放牧下内蒙古温带草原羊草根茎叶功能性状的权衡   总被引:1,自引:0,他引:1  
潘琰  龚吉蕊 《植物学报》2017,52(3):307-321
放牧是草地主要利用方式之一,不同季节放牧通过影响草地功能性状间的权衡从而影响牧后再生及补偿性生长。通过测定内蒙古温带草原优势种羊草(Leymus chinensis)的株高、节间距和分蘖数等软性状及气体交换、抗氧化酶系统和根茎叶渗透调节物质的含量等硬性状,分析了不同季节放牧处理下羊草功能性状的变化及其权衡关系。结果表明,3年短期放牧处理下,类连续放牧(T1)比春季放牧样地(T2)羊草表现出更强的避牧性与耐牧性。类连续放牧与春季放牧样地羊草软性状及光合特性表现出一致性,6月放牧干扰降低了羊草的净光合速率(P_n),8月放牧干扰通过增加电子传递速率(ETR)及光系统Ⅱ(PSⅡ)分配于光化学反应(P)的比值等增大P_n。但春季放牧样地羊草株高较高,且光合产物较多分配于叶片,导致大量有机物质被啃食,不利于牧草再生。而类连续放牧羊草将较多的有机物质分配于根茎,有利于牧草根系吸水及牧后再生。因此,3年短期放牧处理下,类连续放牧更有利于牧草再生及草原的可持续利用。  相似文献   
28.
29.
Herbivory creates conflicts between a plant's need to allocate resources for growth and defense. It is not yet clear how plants rebalance resource utilization between growth and defense in response to increasing grazing intensity. We measured characteristics of the primary and secondary metabolism of Leymus chinensis at five levels of grazing intensity (control, light, moderate, heavy and extremely heavy). Furthermore, we evaluated hormone signaling by quantifying the impact of key hormones on plant growth and defense. Under light grazing intensity, indole‐3‐acetic acid and jasmonates appeared to promote the growth of L. chinensis through a high photosynthetic rate, high water‐use efficiency and high soluble protein contents, whereas abscisic acid decreased these properties. Under moderate grazing intensity, L. chinensis had a low photosynthetic capacity but greater production of secondary metabolites (tannins, total flavonoids and total phenols), possibly induced by salicylic acid. When the grazing pressure further intensified, L. chinensis translocated more carbohydrates to its roots in order to survive and regrow. Leymus chinensis therefore exhibited a trade‐off between growth and defense in order to survive and reproduce under herbivory. Plants developed different mechanisms to enhance their grazing tolerance by means of hormonal regulation.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号