首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33962篇
  免费   3055篇
  国内免费   2477篇
  39494篇
  2024年   89篇
  2023年   420篇
  2022年   816篇
  2021年   1330篇
  2020年   965篇
  2019年   1181篇
  2018年   1159篇
  2017年   798篇
  2016年   1194篇
  2015年   2022篇
  2014年   2250篇
  2013年   2493篇
  2012年   3038篇
  2011年   2834篇
  2010年   1692篇
  2009年   1505篇
  2008年   1833篇
  2007年   1645篇
  2006年   1506篇
  2005年   1238篇
  2004年   1155篇
  2003年   985篇
  2002年   892篇
  2001年   719篇
  2000年   657篇
  1999年   586篇
  1998年   326篇
  1997年   314篇
  1996年   297篇
  1995年   248篇
  1994年   265篇
  1993年   180篇
  1992年   320篇
  1991年   295篇
  1990年   246篇
  1989年   229篇
  1988年   192篇
  1987年   156篇
  1986年   146篇
  1985年   151篇
  1984年   142篇
  1983年   103篇
  1982年   90篇
  1980年   59篇
  1979年   75篇
  1978年   69篇
  1977年   58篇
  1976年   67篇
  1975年   63篇
  1974年   75篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Earlier it was noticed that the supplementary nitrogen to nutritive solution of the cadmium stressed (Cd-stressed) plants can alleviate the toxic effects of this metal on the plants and improve plant growth performance. But the underlying mechanisms of such detoxification effect of nitrogen were not studied. In this study, a ten-day responses of related nitrogen-synthesized genes including γ-glutamylcysteine synthetase (γ-GCs), glutathione synthetase (ECGs) and phytochelatin synthase (PCs) involved in glutathione (ECG) and phytochelation (PC) synthetic pathways were examined. The plant growth performance and leaf chlorophyll content were examined at the final harvest. It was shown that the supplement of additional nitrogen to poplar plants under cadmium stress could significantly up-regulate the expression levels of γ-GCs, ECGs and PCs genes in plant leaves during the first 12 hours. Furthermore, cadmium stressed plants with additional nitrogen supplement showed significant enhancement in growth performance and increase in leaf chlorophyll content compared to sole cadmium stressed plants. Our results suggest that additional nitrogen could stimulate a short-term defense system in poplar plants through ECG and PC synthetic pathways. It is contribute to the alleviation of the toxic symptoms in polar plants caused by cadmium stress. This study provides a potential method to render harmless cadmium toxicity in stressed plants with nitrogen fertilization.  相似文献   
992.
993.
Rice(Oryza sativa) is one of the most widely cultivated food crops, worldwide. Tissue culture is extensively used in rice breeding and functional genome research. The ability to induce callus determines whether a particular rice variety can be subjected to tissue culture and Agrobacterium-mediated transformation. Over the past two decades, many quantitative trait loci(QTLs)related to callus induction traits have been identified;however, individual genes associated with rice callus induction have not been reported. In this study, we characterized three callus-induction traits in a global collection of 510 rice accessions. A genome-wide association study of the rice population in its entirety as well as subpopulations revealed 21 significant loci located in rice callus induction QTLs. We identified three candidate callus induction genes, namely CRL1, Os BMM1, and Os SET1, which Rese are orthologs of Arabidopsis LBD17/LBD29, BBM, and SWN,respectively, which are known to affect callus formation.Furthermore, we predicted that 14 candidate genes might be involved in rice callus induction and showed that RNA interference(RNAi)-mediated disruption of Os IAA10 inhibited callus formation on tissue culture medium.Embryo growth in the Os IAA10 RNAi line was not inhibited by synthetic auxin(2,4-D) treatment, suggesting that Os IAA10 may perceive auxin and activate the expression of downstream genes, such as CRL1, to induce callus formation. The significant loci and candidate genes identified here may provide insight into the mechanism underlying callus formation in rice.  相似文献   
994.
995.
996.
997.
Aedes (Stegomyia) albopictus, also known as the Asian tiger mosquito, is a mosquito which originated in Asia. In recent years, it has become increasingly rampant throughout the world. This mosquito can transmit several arboviruses, including dengue, Zika and chikungunya viruses, and is considered a public health threat. Despite the urgent need of genome engineering to analyze specific gene functions, progress in genetical manipulation of Ae. albopictus has been slow due to a lack of efficient methods and genetic markers. In the present study, we established targeted disruptions in two genes, kynurenine hydroxylase (kh) and dopachrome conversion enzyme (yellow), to analyze the feasibility of generating visible phenotypes with genome editing by the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9) system in Ae. albopictus. Following Cas9 single guide RNA ribonucleoprotein injection into the posterior end of pre-blastoderm embryos, 30%-50% of fertile survivors produced alleles that failed to complement existing kh and yellow mutations. Complete eye and body pigmentation defects were readily observed in GI pupae and adults, indicating successful generation of highly heritable mutations. We conclude that the CRISPR/Cas9-mediated gene editing system can be used mAe. albopictus and that it can be adopted as an efficient tool for genome-scale analysis and biological study.  相似文献   
998.
<正>B and T lymphocytes are responsible for the acquisition of adaptive immune response, among which, B cells dominate humoral immunity. In vivo, B cells utilize surface expressed B cell receptors (BCRs) to sense antigens presented by antigen-presenting cells (APCs), and eventually mediate antibody response and immune memory. It is well recognized  相似文献   
999.
Chronic obstructive pulmonary disease(COPD), lung cancer(LC) and tuberculosis(TB) are common chronic lung diseases that generate a large disease burden and significant health care resource use in China. The aim of this study was to quantify spatial patterns and effects of air pollution and meteorological factors on hospitalization of COPD, LC and TB in Beijing. Daily counts of hospitalization for 2010 were obtained from the Beijing Urban Employees Basic Medical Insurance(UEBMI) system.Bayesian hierarchical Poisson regression models were applied to identify spatial patterns of hospitalization for COPD, LC and TB at the district level and explore associations with inhalable particulate matter(aerodynamic diameter 10 μm, PM_(10)), sulfur dioxide(SO_2), nitrogen dioxide(NO_2), mean temperature and relative humidity. There were 18,882, 14,295 and 2,940 counts of hospitalizations for COPD, LC and TB respectively, in Beijing in 2010. Clusters of high relative risk were in different locations for the three diseases. The effect of relative humidity on COPD hospitalization was most significant with a relative risk(RR) of 1.070(95%CI: 1.054, 1.086) per one percent increase. For lung cancer hospitalization, exposure to ambient SO_2 was associated with a RR of 1.034(95%CI: 1.011, 1.058) per μg m~(–3) increase. For tuberculosis, the effect of mean temperature was significant with a RR of 1.107(95%CI: 1.038, 1.180) per °C increase. Risk factors and spatial patterns were different for hospitalization of non-infectious and infectious chronic lung disease in Beijing. Even over a short time period(one year), associations were apparent with air pollution and meteorological factors.  相似文献   
1000.
Luo  Lilan  He  Yajun  Zhao  Yannan  Xu  Qian  Wu  Jian  Ma  Haiyan  Guo  Hongyan  Bai  Lin  Zuo  Jianru  Zhou  Jian-Min  Yu  Hong  Li  Jiayang 《中国科学:生命科学英文版》2019,62(8):991-1002
Reactive oxygen species(ROS) play a crucial role in numerous biological processes in plants, including development, responses to environmental stimuli, and programmed cell death(PCD). Deficiency in MOSAIC DEATH 1(MOD1), a plastid-localized enoyl-ACP reductase essential for de novo fatty acid biosynthesis in Arabidopsis thaliana, leads to the increased malate export from chloroplasts to mitochondria, and the subsequent accumulation of mitochondria-generated ROS and PCD. In this study, we report the identification and characterization of a mod1 suppressor, som592. SOM592 encodes mitochondrion-localized NAD~+ transporter 2(NDT2). We show that the mitochondrial NAD pool is elevated in the mod1 mutant. The som592 mutation fully suppressed mitochondrial NADH hyper-accumulation, ROS production, and PCD in the mod1 mutant, indicating a causal relationship between mitochondrial NAD accumulation and ROS/PCD phenotypes. We also show that in wild-type plants, the mitochondrial NAD+uptake is involved in the regulation of ROS production in response to continuous photoperiod. Elevation of the alternative respiration pathway can suppress ROS accumulation and PCD in mod1, but leads to growth restriction. These findings uncover a regulatory mechanism for mitochondrial ROS production via NADH homeostasis in Arabidopsis thaliana that is likely important for growth regulation in response to altered photoperiod.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号