首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4917篇
  免费   301篇
  国内免费   2篇
  2024年   8篇
  2023年   16篇
  2022年   71篇
  2021年   80篇
  2020年   52篇
  2019年   71篇
  2018年   100篇
  2017年   86篇
  2016年   156篇
  2015年   263篇
  2014年   316篇
  2013年   334篇
  2012年   484篇
  2011年   424篇
  2010年   268篇
  2009年   240篇
  2008年   336篇
  2007年   263篇
  2006年   257篇
  2005年   220篇
  2004年   190篇
  2003年   169篇
  2002年   148篇
  2001年   127篇
  2000年   124篇
  1999年   112篇
  1998年   38篇
  1997年   28篇
  1996年   20篇
  1995年   21篇
  1994年   20篇
  1993年   17篇
  1992年   26篇
  1991年   23篇
  1990年   14篇
  1989年   11篇
  1988年   8篇
  1987年   4篇
  1986年   9篇
  1984年   4篇
  1982年   4篇
  1981年   3篇
  1977年   4篇
  1976年   4篇
  1974年   7篇
  1973年   3篇
  1972年   3篇
  1969年   4篇
  1967年   5篇
  1966年   5篇
排序方式: 共有5220条查询结果,搜索用时 31 毫秒
201.
Repair of chromosomal breaks is essential for cellular viability, but misrepair generates mutations and gross chromosomal rearrangements. We investigated the interrelationship between two homologous-repair pathways, i.e., mutagenic single-strand annealing (SSA) and precise homology-directed repair (HDR). For this, we analyzed the efficiency of repair in mammalian cells in which double-strand break (DSB) repair components were disrupted. We observed an inverse relationship between HDR and SSA when RAD51 or BRCA2 was impaired, i.e., HDR was reduced but SSA was increased. In particular, expression of an ATP-binding mutant of RAD51 led to a >90-fold shift to mutagenic SSA repair. Additionally, we found that expression of an ATP hydrolysis mutant of RAD51 resulted in more extensive gene conversion, which increases genetic loss during HDR. Disruption of two other DSB repair components affected both SSA and HDR, but in opposite directions: SSA and HDR were reduced by mutation of Brca1, which, like Brca2, predisposes to breast cancer, whereas SSA and HDR were increased by Ku70 mutation, which affects nonhomologous end joining. Disruption of the BRCA1-associated protein BARD1 had effects similar to those of mutation of BRCA1. Thus, BRCA1/BARD1 has a role in homologous repair before the branch point of HDR and SSA. Interestingly, we found that Ku70 mutation partially suppresses the homologous-repair defects of BARD1 disruption. We also examined the role of RAD52 in homologous repair. In contrast to yeast, Rad52(-)(/)(-) mouse cells had no detectable HDR defect, although SSA was decreased. These results imply that the proper genetic interplay of repair factors is essential to limit the mutagenic potential of DSB repair.  相似文献   
202.
203.
Imaging ellipsometry (IE) was used to detect the binding of insulin to its antibody on a solid surface. The modification of a gold surface with 11-mecaptoundecanoic acid (11-MUA), the adsorption of protein G, and antibody immobilization onto the protein G layer were confirmed by surface plasmon resonance. Ellipsometric images and ellipsometric angles of the surface antibody were acquired using the IE system by off-null ellipsometry. Ellipsometric images of antigen binding to the antibody were acquired, and their mean optical intensities estimated. Changes in mean optical intensity indicated that the detection range for insulin was from 10 ng/ml to 100 microg/ml.  相似文献   
204.
An immunosensor based on surface plasmon resonance (SPR) using protein G was developed for the detection of Salmonella typhimurium. A protein G layer was fabricated by binding chemically to self-assembly monolayer (SAM) of 11-mercaptoundecanoic acid (MUA) on gold (Au) surface. The formation of protein G layer on Au surface modified with 11-MUA and the binding of antibody and antigen in series were confirmed by SPR spectroscopy. The effect of detergent such as Tween-20 on binding efficiency of antibody and antigen was investigated by SPR. The binding efficiency of antigen to the antibody immobilized on Au surface was improved up to about 85% and 100% by using protein G and Tween-20, respectively. The surface morphology analyses of 11-MUA monolayer on Au substrate, protein G layer on 11-MUA monolayer and antibody layer immobilized on protein G layer were performed by atomic force microscope (AFM). Consequently, an immunosensor based on SPR for the detection of S. typhimurium using protein G was developed with a detection range of 10(2) to 10(9)CFU/ml. The current fabrication technique of a SPR immunosensor for the detection of S. typhimurium could be applied to construct other immnosensors or protein chips.  相似文献   
205.
The Pseudomonas syringae pv. tomato DC3000 type III secretion system (TTSS) is required for bacterial pathogenicity on plants and elicitation of the hypersensitive response (HR), a programmed cell death (PCD) that occurs on resistant plants. Cosmid pHIR11 enables non-pathogens to elicit an HR dependent upon the TTSS and the effector HopPsyA. We used pHIR11 to determine that effectors HopPtoE, avirulence AvrPphEPto, AvrPpiB1Pto, AvrPtoB, and HopPtoF could suppress a HopPsyA-dependent HR on tobacco and Arabidopsis. Mixed inoculum and Agrobacterium-mediated transient expression experiments confirmed that suppressor action occurred within plant cells. These suppressors, with the exception of AvrPpiB1Pto, inhibited the expression of the tobacco pathogenesis-related (PR) gene PR1a. DC3000 suppressor mutants elicited an enhanced HR consistent with these mutants lacking an HR suppressor. Additionally, HopPtoG was identified as a suppressor on the basis of an enhanced HR produced by a hopPtoG mutant. Remarkably, these proteins functioned to inhibit the ability of the pro-apoptotic protein, Bax to induce PCD in plants and yeast, indicating that these effectors function as anti-PCD proteins in a trans-kingdom manner. The high proportion of effectors that suppress PCD suggests that suppressing plant immunity is one of the primary roles for DC3000 effectors and a central requirement for P. syringae pathogenesis.  相似文献   
206.
In this study, the cellular responses of Stenotrophomonas sp. OK-5 to explosive 2,4,6-trinitrotoluene (TNT) have been extensively analyzed. The stress shock proteins, which might contribute to enhancing cellular resistance to TNT-mediated toxicity, were induced at different concentrations of TNT used as a substrate for cell culture of Stenotrophomonas sp. OK-5 capable of utilizing TNT. Proteomic analysis for 2-DE of soluble protein fractions from the culture of OK-5 exposed to TNT demonstrated approximately 300 spots on the silver-stained gel ranging from pH 3 to pH 10. Among them, 10 spots significantly induced and expressed in response to TNT were selected and analyzed. As the result of internal amino acid sequencing with ESI-Q TOF mass spectrometry, TNT-mediated stress shock proteins such as DnaK, OmpW, and OsmC were identified and characterized. Survival of strain OK-5 was periodically monitored in the presence of different concentrations of TNT along with the production of the stress shock proteins. Cells of strain OK-5 pre-exposed to TNT had in improved survival tolerance. Analysis of total cellular fatty acids in strain OK-5 suggested that several saturated or unsaturated fatty acids might increase or decrease under TNT-mediated stress condition. Scanning electron microscopy of cells treated with 0.8 mM TNT for 12 h revealed irregular rod shapes with wrinkled surfaces.  相似文献   
207.
Alder (Alnus glutinosa) and more than 200 angiosperms that encompass 24 genera are collectively called actinorhizal plants. These plants form a symbiotic relationship with the nitrogen-fixing actinomycete Frankia strain HFPArI3. The plants provide the bacteria with carbon sources in exchange for fixed nitrogen, but this metabolite exchange in actinorhizal nodules has not been well defined. We isolated an alder cDNA from a nodule cDNA library by differential screening with nodule versus root cDNA and found that it encoded a transporter of the PTR (peptide transporter) family, AgDCAT1. AgDCAT1 mRNA was detected only in the nodules and not in other plant organs. Immunolocalization analysis showed that AgDCAT1 protein is localized at the symbiotic interface. The AgDCAT1 substrate was determined by its heterologous expression in two systems. Xenopus laevis oocytes injected with AgDCAT1 cRNA showed an outward current when perfused with malate or succinate, and AgDCAT1 was able to complement a dicarboxylate uptake-deficient Escherichia coli mutant. Using the E. coli system, AgDCAT1 was shown to be a dicarboxylate transporter with a K(m) of 70 microm for malate. It also transported succinate, fumarate, and oxaloacetate. To our knowledge, AgDCAT1 is the first dicarboxylate transporter to be isolated from the nodules of symbiotic plants, and we suggest that it may supply the intracellular bacteria with dicarboxylates as carbon sources.  相似文献   
208.
Chung E  Park JM  Oh SK  Joung YH  Lee S  Choi D 《Planta》2004,220(2):286-295
The isolated full-length Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) cDNA clone was selected from the chili pepper expressed sequence tag database (). Phylogenetic analysis based on the deduced amino acid sequence of CaCDPK3 cDNA revealed significant sequence similarity to the winter squash (Cucurbita maxima) CmCPK2 gene (81% identity). Genomic gel blot analysis disclosed that CaCDPK3 belongs to a multigene family in the pepper genome. CaCDPK3 expression was root tissue-specific, as shown by Northern blot data. The gene was rapidly induced in response to various osmotic stress factors and exogenous abscisic acid application in pepper leaves. Moreover, CaCDPK3 RNA expression was induced by an incompatible pathogen and by plant defense-related chemicals such as ethephon, salicylic acid and jasmonic acid. The biochemical properties of CaCDPK3 were investigated using a CaCDPK3 and glutathione S-transferase (GST) fusion protein. The recombinant proteins retained calcium-binding ability, and displayed autophosphorylation activity in vitro in a calcium-dependent manner. Further transient-expression studies showed that CaCDPK3 fused with soluble modified green fluorescent protein (smGFP) localized to the cytosol in chili pepper protoplasts. We propose that CaCDPK3 is implicated in biotic and abiotic stresses in pepper plants.  相似文献   
209.
Jang HH  Lee KO  Chi YH  Jung BG  Park SK  Park JH  Lee JR  Lee SS  Moon JC  Yun JW  Choi YO  Kim WY  Kang JS  Cheong GW  Yun DJ  Rhee SG  Cho MJ  Lee SY 《Cell》2004,117(5):625-635
Although a great deal is known biochemically about peroxiredoxins (Prxs), little is known about their real physiological function. We show here that two cytosolic yeast Prxs, cPrxI and II, which display diversity in structure and apparent molecular weights (MW), can act alternatively as peroxidases and molecular chaperones. The peroxidase function predominates in the lower MW forms, whereas the chaperone function predominates in the higher MW complexes. Oxidative stress and heat shock exposure of yeasts causes the protein structures of cPrxI and II to shift from low MW species to high MW complexes. This triggers a peroxidase-to-chaperone functional switch. These in vivo changes are primarily guided by the active peroxidase site residue, Cys(47), which serves as an efficient "H(2)O(2)-sensor" in the cells. The chaperone function of these proteins enhances yeast resistance to heat shock.  相似文献   
210.
Kim TB  Lee YJ  Kim P  Kim CS  Oh DK 《Biotechnology letters》2004,26(8):623-627
Long-term cell recycle fermentations of Candida tropicalis were performed over 14 rounds of fermentation. The average xylitol concentrations, fermentation times, volumetric productivities and product yields for 14 rounds were 105 g l–1, 333 h, 4.4 g l–1 h–1 and 78%, respectively, in complex medium; and 110 g l–1, 284 h, 5.4 g l–1 h–1 and 81%, respectively, in a chemically defined medium. These productivities were 1.7 and 2.4 times those with batch fermentation in the complex and chemically defined media, respectively. The xylitol yield from xylose with cell recycle fermentation using the chemically defined medium was 81% (w/w), which was 7% greater than the xylitol yield with batch fermentation (74%); both modes of fermentation gave the same yield using the complex medium. These results suggest that the chemically defined medium is more suitable for production of xylitol than complex medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号