首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   27篇
  308篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   9篇
  2011年   9篇
  2010年   1篇
  2009年   7篇
  2008年   12篇
  2007年   6篇
  2006年   7篇
  2005年   6篇
  2004年   16篇
  2003年   21篇
  2002年   11篇
  2001年   19篇
  2000年   12篇
  1999年   10篇
  1998年   4篇
  1997年   4篇
  1996年   9篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   8篇
  1991年   10篇
  1990年   15篇
  1989年   2篇
  1988年   8篇
  1987年   6篇
  1986年   6篇
  1985年   7篇
  1984年   9篇
  1983年   5篇
  1982年   7篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1969年   2篇
  1967年   1篇
排序方式: 共有308条查询结果,搜索用时 15 毫秒
131.
GM3 synthase (SAT-I) is the primary glycosyltransferase responsible for the biosynthesis of ganglio-series gangliosides. In this study, we identify three isoforms of mouse SAT-I proteins, named M1-SAT-I, M2-SAT-I, and M3-SAT-I, which possess distinct lengths in their NH2-terminal cytoplasmic tails. These isoforms are produced by leaky scanning from mRNA variants of mSAT-Ia and mSAT-Ib. M2-SAT-I and M3-SAT-I were found to be localized in the Golgi apparatus, as expected, whereas M1-SAT-I was exclusively found in the endoplasmic reticulum (ER). Specific multiple arginines (R) arranged in an R-based motif, RRXXXXR necessary for ER targeting, were found in the cytoplasmic tail of M1-SAT-I, and in vivo GM3 biosynthesis by M1-SAT-I was very low because of restricted transport to the Golgi apparatus. In addition, M1-SAT-I and M3-SAT-I had a long half-life relative to M2-SAT-I. This is the first report demonstrating the presence of an ER-targeting R-based motif in the cytoplasmic tail of a protein in the mammalian glycosyltransferase family of enzymes. The system, which produces SAT-I isoforms having distinct characteristics, is likely to be of critical importance for the regulation of GM3 biosynthesis under various pathological and physiological conditions.  相似文献   
132.
Summary We constructed a recombinant adenovirus vector that contained the origin-defective SV40 early gene, coding temperature-sensitive T antigen. This vector transferred the SV40 early gene into human epidermal keratinocytes with high efficiency. T antigen conferred the ability of keratinocytes to grow with limited differentiation in the presence of serum and high calcium concentration at the permissive temperature (34°C), although normal keratinocytes were induced to differentiate and stop growing under the same conditions. The serum/Ca++-resistant cells did not proliferate at the nonpermissive temperature (40°C), indicating that they depended on T antigen for their proliferation. The temperaturesensitive T antigen dissociated from the tumor suppressor gene products, p53, at 40°C. The serum/Ca++-resistant cells still had the ability to proceed to terminal differentiation when injected into SCID mice as cultured keratinocytes. However, they did not form an apparent basal layer. This indicated that the tissue remodeling process in the serum/Ca++-resistant keratinocytes was abnormal. All of these epidermoid cysts disappeared within 8 wk and no tumor developed for 6 mo. We consider that ΔE1/SVtsT is a useful tool to examine multistep carcinogenesis of human epithelial cells in vitro.  相似文献   
133.
The post-termination ribosomal complex is disassembled by ribosome recycling factor (RRF) and elongation factor G. Without RRF, the ribosome is not released from mRNA at the termination codon and reinitiates translation downstream. This is called unscheduled translation. Here, we show that at the non-permissive temperature of a temperature-sensitive RRF strain, RRF is lost quickly, and some ribosomes reach the 3' end of mRNA. However, instead of accumulating at the 3' end of mRNA, ribosomes are released as monosomes. Some ribosomes are transferred to transfer-messenger RNA from the 3' end of mRNA. The monosomes thus produced are able to translate synthetic homopolymer but not natural mRNA with leader and canonical initiation signal. The pellet containing ribosomes appears to be responsible for rapid but reversible inhibition of most but not all of protein synthesis in vivo closely followed by decrease of cellular RNA and DNA synthesis.  相似文献   
134.
To elucidate the biological significance of the lactosylceramide (LacCer) branching in glycosphingolipid (GSL) biosynthesis, we established ganglioside GM3- and lactosylsulfatide SM3-reconstituted cells by introducing the GM3 synthase gene and the sulfotransferase gene, respectively. In SM3-expressing cells, the reduction of beta1 integrin mRNA expression, the reduced adhesivity to fibronectin and laminin, and the suppression of anchorage-independent growth (tumorigenic potential) were observed. On the other hand, in GM3-expressing cells, anchorage-independent growth was promoted and the expression of PDGF alpha receptor mRNA was specifically reduced. Interestingly enough, no change in anchorage-dependent growth was observed in these cells, and tumorigenic signals were controlled selectively in both positive and negative directions. Thus, the spatio-temporal, gene expression control mechanism by individual GSL molecules accumulating in the cell membrane microdomain (raft) has been proven.  相似文献   
135.
Membrane microdomains (lipid rafts) are now recognized as criticalfor proper compartmentalization of insulin signaling, but theirrole in the pathogenesis of insulin resistance has not beeninvestigated. Detergent-resistant membrane microdomains (DRMs),isolated in the low-density fractions, are highly enriched incholesterol, glycosphingolipids and various signaling molecules.Tumor necrosis factor alpha (TNF) induces insulin resistancein type 2 diabetes, but its mechanism of action is not fullyunderstood. In other studies we have found a selective increasein the acidic glycosphingolipid ganglioside GM3 in 3T3-L1 adipocytestreated with TNF, suggesting a specific function for GM3. Inthe DRMs from TNF-treated 3T3-L1 adipocytes, GM3 levels weredoubled compared with results in normal adipocytes. Additionally,insulin receptor (IR) accumulations in the DRMs were diminished,whereas caveolin and flotillin levels were unchanged. Furthermore,insulin-dependent IR internalization and intracellular movementof the IR substrate 1(IRS-1) were both greatly suppressed inthe treated cells, leading to an uncoupling of IR–IRS-1signaling. GM3 depletion was able to counteract the TNF-inducedinhibitions of IR internalization and accumulation into DRMs.Together, these findings provide compelling evidence that ininsulin resistance the insulin metabolic signaling defect canbe attributed to a loss of IRs in the microdomains due to anaccumulation of GM3.  相似文献   
136.
137.
A detailed kinetic study on the successive four-step reduction of cyt c3, which has four heme units in a single protein, III4 leads to III3II leads to III2II2 leads to III II3 leads to II4, was carried out by stopped-flow electronic spectroscopy (SF-UV) and stopped-flow circular dichroism spectroscopy (SF-CD). Based on the absorbance change vs. time and the ellipticity change vs. time at the characteristic CD, together with the electronic absorption of the enzyme, rate constants for the successive four electron transfer steps, k1-k4, were successfully estimated by computer simulation. The rate constants of the four steps (k1 = 19.8 s-1, k2 = 11.9 s-1, k3 = 8.9 s-1, and k4 = 1.6 s-1; 8.0 10(-4) M Na2S2O4) are quite different from the statistical values (4: 3: 2: 1), thus excluding the possibility of random reduction of hemes of equal reactivities. Instead, each heme has its own reactivity, probably dependent on its local environment. The value of k3 is somewhat higher than the statistical value, indicating the existence of an autoacceleration effect, although small. This autoacceleration is most probably due to a unique heme-heme and/or heme-environment interaction since unusual CD and electronic absorptions were observed at 350-400 nm at about the time corresponding.  相似文献   
138.
The plasma membrane of mammalian cells is one of the tight barriers against gene transfer by synthetic delivery systems. Various agents have been used to facilitate gene transfer by destabilizing the endosomal membrane under acidic conditions, but their utility is limited, especially for gene transfer in vivo. In this article, we report that the protein transduction domain of human immunodeficiency virus type 1 Tat protein (Tat peptide) greatly facilitates gene transfer via membrane destabilization. We constructed recombinant lambda phage particles displaying Tat peptide on their surfaces and carrying mammalian marker genes as part of their genomes (Tat-phage). We demonstrate that, when animal cells are briefly exposed to Tat-phage, significant expression of phage marker genes is induced with no harmful effects to the cells. In contrast, recombinant phage displaying other functional peptides, such as the integrin-binding domain or a nuclear localization signal, could not induce detectable marker gene expression. The expression of marker genes induced by Tat-phage is not affected by endosomotropic agents but is partially impaired by inhibitors of caveolae formation. These data suggest that Tat peptide will become a useful component of synthetic delivery vehicles that promote gene transfer independently of the classical endocytic pathway.  相似文献   
139.
Cell-surface glycoconjugates, such as proteoglycans, glycoproteins, and glycosphingolipids have been suggested to serve important functions in hearing because of their variety and their specific expression patterns during the development and maturation of cochlea. However, there has been no definitive proof regarding their involvement in auditory functions. In this study, we provide an overview of the expression of glycoconjugates in auditory systems and consider their possible involvement in hearing functions. We include our recent findings regarding deafness in ganglioside (sialic acid containing glycosphingolipids)-deficient mice, and address the importance of functional glycobiology in auditory systems.  相似文献   
140.
Adult neurogenesis and modulation of neural circuit function   总被引:1,自引:0,他引:1  
A growing body of evidence indicates that adult neurogenesis is involved in the modulation of certain types of hippocampus-dependent memory. Recent studies suggest that newly born neurons play a key role in pattern separation mediated by the dentate gyrus, in systems consolidation, through which memory becomes progressively independent of the hippocampus, and in social memory-based reproductive behavior. Furthermore, neural activity and learning are now thought to regulate the proliferation of neuronal precursors as well as the survival and apoptosis of new neurons. Moreover, these processes also affect the development of the dendritic arbor and dendritic spines of new neurons, thereby modulating the integration of adult-born neurons into the functional neural circuit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号