首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   6篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   7篇
  2005年   8篇
  2004年   9篇
  2003年   8篇
  2002年   5篇
  2001年   1篇
排序方式: 共有77条查询结果,搜索用时 78 毫秒
71.
Molecular beacons with intrinsically fluorescent nucleotides   总被引:4,自引:0,他引:4  
We report the design, synthesis and characterization of a novel molecular beacon (MB-FB) which uses the fluorescent bases (FB) 2-aminopurine (AP) and pyrrolo-dC (P-dC) as fluorophores. Because the quantum yield of these FB depend on hybridization with complementary target, the fluorescent properties of MB-FB were tuned by placing the FB site specifically within the MB such that hybridization with complementary sequence switches from single strand to double strand for AP and vice versa for P-dC. The MB-FB produces a ratiometric fluorescence increase (the fluorescence emission of P-dC over that of AP in the presence and absence of complementary sequence) of 8.5 when excited at 310 nm, the maximum absorption of AP. This ratiometric fluorescence is increased to 14 by further optimizing excitation (325 nm). The fluorescence lifetime is also affected by the addition of target, producing a change in the long-lived component from 6.5 to 8.7 ns (Exc. 310 nm, Em. 450 nm). Thermal denaturation profiles monitored at 450 nm (P-dC emission) show a cooperative denaturation of the MB-FB with a melting temperature of 53°C. The thermal denaturation profile of MB-FB hybridized with its target shows a marked fluorescence reduction at 53°C, consistent with a transition from double stranded helix to random coil DNA.  相似文献   
72.
73.
Chronic myeloid leukemia (CML) is characterized by the accumulation of malignant and immature white blood cells which spread to the peripheral blood and other tissues/organs. Despite the fact that current tyrosine kinase inhibitors (TKIs) are capable of achieving the complete remission by reducing the tumor burden, severe adverse effects often occur in CML patients treated with TKIs. The differentiation therapy exhibits therapeutic potential to improve cure rates in leukemia, as evidenced by the striking success of all-trans-retinoic acid in acute promyelocytic leukemia treatment. However, there is still a lack of efficient differentiation therapy strategy in CML. Here we showed that MPL, which encodes the thrombopoietin receptor driving the development of hematopoietic stem/progenitor cells, decreased along with the progression of CML. We first elucidated that MPL signaling blockade impeded the megakaryocytic differentiation and contributed to the progression of CML. While allogeneic human umbilical cord-derived mesenchymal stem cells (UC-MSCs) treatment efficiently promoted megakaryocytic lineage differentiation of CML cells through restoring the MPL expression and activating MPL signaling. UC-MSCs in combination with eltrombopag, a non-peptide MPL agonist, further activated JAK/STAT and MAPK signaling pathways through MPL and exerted a synergetic effect on enhancing CML cell differentiation. The established combinational treatment not only markedly reduced the CML burden but also significantly eliminated CML cells in a xenograft CML model. We provided a new molecular insight of thrombopoietin (TPO) and MPL signaling in MSCs-mediated megakaryocytic differentiation of CML cells. Furthermore, a novel anti-CML treatment regimen that uses the combination of UC-MSCs and eltrombopag shows therapeutic potential to overcome the differentiation blockade in CML.Subject terms: Chronic myeloid leukaemia, Mesenchymal stem cells  相似文献   
74.
Ghrelin is a brain-gut peptide, and the first 28-peptide that was found in the gastric mucosa. It has a growth hormone (GH)-releasing hormone-like effect and can potently promote the release of GH from pituitary GH cells; however, it is unable to stimulate GH synthesis. Therefore, ghrelin is believed to play a role in promoting bone growth and development. The correlation between ghrelin and some degenerative diseases of the musculoskeletal system has been reported recently, and ghrelin may be one of the factors influencing degenerative pathologies, such as osteoporosis, osteoarthritis, sarcopenia and intervertebral disc degeneration. With population ageing, the risk of health problems caused by degenerative diseases of the musculoskeletal system gradually increases. In this article, the roles of ghrelin in musculoskeletal disorders are summarized to reveal the potential effects of ghrelin as a key target in the treatment of related bone and muscle diseases and the need for further research.  相似文献   
75.
ABSTRACT

Lysosomal damage activates AMPK, a regulator of macroautophagy/autophagy and metabolism, and elicits a strong ubiquitination response. Here we show that the cytosolic lectin LGALS9 detects lysosomal membrane breach by binding to lumenal glycoepitopes, and directs both the ubiquitination response and AMPK activation. Proteomic analyses have revealed increased LGALS9 association with lysosomes, and concomitant changes in LGALS9 interactions with its newly identified partners that control ubiquitination-deubiquitination processes. An LGALS9-inetractor, deubiquitinase USP9X, dissociates from damaged lysosomes upon recognition of lumenal glycans by LGALS9. USP9X’s departure from lysosomes promotes K63 ubiquitination and stimulation of MAP3K7/TAK1, an upstream kinase and activator of AMPK hitherto orphaned for a precise physiological function. Ubiquitin-activated MAP3K7/TAK1 controls AMPK specifically during lysosomal injury, caused by a spectrum of membrane-damaging or -permeabilizing agents, including silica crystals, the intracellular pathogen Mycobacterium tuberculosis, TNFSF10/TRAIL signaling, and the anti-diabetes drugs metformin. The LGALS9-ubiquitin system activating AMPK represents a novel signal transduction system contributing to various physiological outputs that are under the control of AMPK, including autophagy, MTOR, lysosomal maintenance and biogenesis, immunity, defense against microbes, and metabolic reprograming.  相似文献   
76.
Solute carrier family 25 member 20 (SLC25A20) is a mitochondrial-membrane–carrier protein involved in the transport of acylcarnitines into mitochondrial matrix for oxidation. A previous-integrated-proteogenomic study had identified SLC25A20 as one of the top-three prognostic biomarkers in HCC. However, the expression and the biological function of SLC25A20 have not yet been investigated in HCC. In the present study, we found that SLC25A20 expression is frequently down-regulated in HCC cells mainly due to the up-regulation of miR-132-3p. Down-regulation of SLC25A20 is associated with a poor prognosis in patients with HCC. SLC25A20 suppressed HCC growth and metastasis, both in vitro and in vivo, by suppression of G1–S cell transition, epithelial-to-mesenchymal transition (EMT), and induction of cell apoptosis. Mechanistically, SLC25A20 down-regulation promoted HCC growth and metastasis through suppression of fatty-acid oxidation. Altogether, SLC25A20 plays a critical tumor-suppressive role in carcinogenesis of HCC; SLC25A20 may serve as a novel prognostic factor and therapeutic target for patients with HCC.Subject terms: Liver cancer, Liver cancer  相似文献   
77.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号