首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   9篇
  国内免费   22篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   8篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   7篇
  2013年   11篇
  2012年   4篇
  2011年   16篇
  2010年   16篇
  2009年   4篇
  2008年   14篇
  2007年   4篇
  2006年   12篇
  2005年   7篇
  2004年   13篇
  2003年   14篇
  2002年   10篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   2篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
21.
Extracellular domains of the transmembrane glycoprotein, neuropilin-1 (Np1), specifically bind an array of factors and co-receptors including class-3 semaphorins (Sema3a), vascular endothelial growth factor (VEGF), hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-β 1 (TGF-β1), and fibroblast growth factor2 (FGF2). Np1 may have a role in immune response, tumor cell growth, and angiogenesis, but its relative expression in comparison to its co-primary receptors, VEGF and Sema3a, is not known. In this study we determined the mRNA expression of Np1 and its co-receptors, VEGF and Sema3a, and the ratio of VEGF/Sema3a in different human and rodent cell lines. Expression of Np1, VEGF and Sema3a is very low in cells derived from normal tissues, but these proteins are highly expressed in tumor-derived cells. Furthermore, the ratio of VEGF/Sema3a is highly variable in different tumor cells. The elevated mRNA expression of Np1 and its putative receptors in tumor cells suggests a role for these proteins in tumor cell migration and angiogenesis. As different tumor cells exhibit varying VEGF/Sema3a ratios, it appears that cancer cells show differential response to angiogenic factors. These results bring to light the individual variation among the cancer-related genes, Np1, VEGF, and Sema3a, and provide an important impetus for the possible personalized therapeutic approaches for cancer patients.  相似文献   
22.
A 2-step kinase assay was developed and used in a high-throughput screen (HTS) of more than 1 million compounds in an effort to identify c-Abl tyrosine kinase activators. This assay employed a 2-step phosphorylation reaction: in the first step, purified recombinant c-Abl was activated by incubating with compound in the presence of adenosine triphosphate (ATP). In the second step, the TAMRA-labeled IMAP Abltide substrate was added to allow phosphorylation of the substrate to occur. The assay was calibrated such that inactive c-Abl protein was activated by ATP alone to a degree that it not only demonstrated a measurable c-Abl activity but also maintained a robust assay window for screening. The screen resulted in 8624 primary hits with >30% response. Further analysis showed that 1024 had EC(50) <10 μM with a max % response of >50%. These hits were structurally and chemically diverse with possibly different mechanisms for activating c-Abl. In addition, selective hits were shown to be cell permeable and were able to induce c-Abl activation as determined by In-Cell Western (ICW) analysis of HEK-MSRII cells transduced with BacMam virus expressing full-length c-Abl.  相似文献   
23.
Ghosal G  Yuan J  Chen J 《EMBO reports》2011,12(6):574-580
Mutations in HepA-related protein (HARP, or SMARCAL1) cause Schimke immunoosseous dysplasia (SIOD). HARP has ATP-dependent annealing helicase activity, which helps to stabilize stalled replication forks and facilitate DNA repair during replication. Here, we show that the conserved tandem HARP (2HP) domain dictates this annealing helicase activity. Furthermore, chimeric proteins generated by fusing the 2HP domain of HARP with the SNF2 domain of BRG1 or HELLS show annealing helicase activity in vitro and, when targeted to replication forks, mimic the functions of HARP in vivo. We propose that the HARP domain endows HARP with this ATP-driven annealing helicase activity.  相似文献   
24.
BACKGROUND: Both viral and nonviral carriers have been used to carry small interfering RNA molecules (siRNA) to their cytosolic mRNA target. To date, few peptide carriers have been developed that have proved effective for siRNA delivery. Our previous branched carriers composed of histidine and lysine were useful for transfection of plasmids. In this study, we determined if these and more highly branched HK polymers were effective carriers of siRNA. METHODS: Several branched polymers were synthesized on a Ranin Voyager synthesizer. These polymers were then screened for their ability to transfer siRNA into SVR-bag4 cells, MDA-MB-435 cells, and C6 cells. After one polymer, H3K8b, was identified as an effective carrier of siRNA, additional polymers were synthesized to determine the essential domains for siRNA transport. The size/zeta-potential of HK : siRNA complexes were measured with the N4 submicron particle size analyzer and the Delsa 440 SX zeta-potential analyzer, respectively. Toxicity of the highly branched polymers in complex with siRNA was investigated by flow cytometry. RESULTS: In an endothelial cell line (SVR-bag4) that stably expressed beta-galactosidase (beta-gal), an siRNA in complex with the H3K8b polymer inhibited beta-gal expression by more than 80%. In contrast, the polymer H2K4b, which was an effective carrier of plasmids, was not an efficient carrier of siRNA. The size and surface charge did not distinguish effective from ineffective HK carriers of siRNA. By modifying H3K8b, we then determined what properties of H3K8b augmented siRNA delivery. The histidine-rich domain and the length of the terminal arms of H3K8 were important for siRNA delivery. The modestly more effective analog of H3K8b containing an integrin ligand, H3K8b(+RGD), was able to inhibit markedly intracellular beta-gal expression. Furthermore, we determined that H3K8b(+RGD) in complex with a luciferase-targeting siRNA inhibited luciferase expression in MDA-MB-435 cells. At its optimal concentration for inhibiting its target, H3K8b(+RGD) : siRNA complex had minimal toxicity. In contrast, carriers of siRNA such as Oligofectamine and Lipofectamine 2000 were significantly more toxic. CONCLUSIONS: Both the degree of complexity and the sequence specificity are important factors to be considered for developing the HK carrier of siRNA. In particular, we found that certain branched HK polymers (H3K8b, H3K8b(+RGD), and similar structural analogs) with eight terminal branches and a histidine-rich domain were effective carriers of siRNA.  相似文献   
25.
Single-molecule fluorescence resonance energy transfer and functional assays have been used to study the initiation and regulation of the bacteriophage T4 DNA replication system. Previous work has demonstrated that a complex of the helicase loading protein (gp59) and the DNA polymerase (gp43) on forked DNA totally inhibits the polymerase and exonuclease activities of gp43 by a molecular locking mechanism (Xi, J., Zhuang, Z., Zhang, Z., Selzer, T., Spiering, M. M., Hammes, G. G., and Benkovic, S. J. (2005) Biochemistry 44, 2305-2318). We now show that this complex is "unlocked" by the addition of the helicase (gp41) with restoration of the DNA polymerase activity. Gp59 retains its ability to load the helicase while forming a gp59-gp43 complex at a DNA fork in the presence of the single-stranded DNA binding protein (gp32). Upon the addition of gp41 and MgATP, gp59 dissociates from the complex, and the DNA-bound gp41 is capable of recruiting the primase (gp61) to form a functional primosome and, subsequently, a fully active replisome. Functional assays of leading- and lagging-strand synthesis on an active replication fork show that the absence of gp59 has no effect on the coupling of leading- and lagging-strand synthesis or on the size of the Okazaki DNA fragments. We conclude that gp59 acts in a manner similar to the clamp loader to ensure proper assembly of the replisome and does not remain as a replisome component during active replication.  相似文献   
26.
Calmyrin is a myristoylated calcium binding protein that contains four putative EF-hands. Calmyrin interacts with a number of proteins, including presenilin-2 (PS2). However, the biophysical properties of calmyrin, and the molecular mechanisms that regulate its binding to different partners, are not well understood. By site-directed mutagenesis and Ca2+ binding studies, we found that calmyrin binds two Ca2+ ions with a dissociation constant of approximately 53 microM, and that the two C-terminal EF-hands 3 and 4 bind calcium. Using ultraviolet spectroscopy, circular dichroism (CD), and NMR, we found that Ca(2+)-free and -bound calmyrin have substantially different protein conformations. By yeast two-hybrid assays, we found that both EF-hands 3 and 4 of calmyrin must be intact for calmyrin to interact with PS2-loop sequences. Pulse-chase studies of HeLa cells transfected with calmyrin expression constructs indicated that wild-type (Wt) calmyrin has a half-life of approximately 75 min, whereas a mutant defective in myristoylation turns over more rapidly (half-life of 35 min). By contrast, the half-lives of calmyrin mutants with a disrupted EF-hand 3 or EF-hand 4 were 52 and 170 min, respectively. Using immunofluorescence staining of HeLa cells transfected with Wt and mutant calmyrin cDNAs, we found that both calcium binding and myristoylation are important for dynamic intracellular targeting of calmyrin. Double immunofluorescence microscopy indicated that Wt and myristoylation-defective calmyrin proteins colocalize efficiently and to the same extent with PS2, whereas calmyrin mutants defective in calcium binding display less colocalization with PS2. Our results suggest that calmyrin functions as a calcium sensor and that calcium binding sequences in calmyrin are important for interaction with the PS2 loop.  相似文献   
27.
Cardiolipin is a major membrane polyglycerophospholipid that is required for the reconstituted activity of a number of key mitochondrial enzymes involved in energy metabolism. Cardiolipin is subjected to remodeling subsequent to its de novo biosynthesis to attain appropriate acyl composition for its biological functions. Yet, the enzyme(s) involved in the remodeling process have not been identified. We report here the identification and characterization of a murine gene that encodes an acyl-CoA:lysocardiolipin acyltransferase 1 (ALCAT1). Expression of the ALCAT1 cDNA in either insect or mammalian cells led to a significant increase in acyl-CoA:monolysocardiolipin acyltransferase and acyl-CoA: dilysocardiolipin acyltransferase activities that exhibited a dependence upon ALCAT1 enzyme levels. The recombinant ALCAT1 enzyme recognizes both monolysocardiolipin and dilysocardiolipin as substrates with a preference for linoleoyl-CoA and oleoyl-CoA as acyl donors. In contrast, no significant increases in acyltransferase activities by the recombinant ALCAT1 were detected against either glycerol-3-phosphate or a variety of other lysophospholipids as substrates, including lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylserine. Immunocytohistochemical analysis showed that the ALCAT1 enzyme is localized in the endoplasmic reticulum, which is supported by a significant ALCAT activity in isolated liver and heart microsomes. Northern blot analysis indicates that the mouse ALCAT1 is widely distributed, with the highest expression in heart and liver. In support of a role for ALCAT1 in maintaining heart function, the ALCAT1 gene is conserved among different species of vertebrates, but not in non-atrium organisms. ALCAT1 represents the first identified cardiolipin-remodeling enzyme from any living organism; its identification implies a novel role for the endoplasmic reticulum in cardiolipin metabolism.  相似文献   
28.
To activate skeletal muscle contraction, action potentials must be sensed by dihydropyridine receptors (DHPRs) in the T tubule, which signal the Ca2+ release channels or ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) to open. We demonstrate here an inhibitory effect of the T tubule on the production of sparks of Ca2+ release. Murine primary cultures were confocally imaged for Ca2+ detection and T tubule visualization. After 72 h of differentiation, T tubules extended from the periphery for less than one-third of the myotube radius. Spontaneous Ca2+ sparks were found away from the region of cells where tubules were found. Immunostaining showed RyR1 and RyR3 isoforms in all areas, implying inhibition of both isoforms by a T tubule component. To test for a role of DHPRs in this inhibition, we imaged myotubes from dysgenic mice (mdg) that lack DHPRs. These exhibited T tubule development similar to that of normal myotubes, but produced few sparks, even in regions where tubules were absent. To increase spark frequency, a high-Ca2+ saline with 1 mM caffeine was used. Wild-type cells in this saline plus 50 µM nifedipine retained the topographic suppression pattern of sparks, but dysgenic cells in high-Ca2+ saline did not. Shifted excitation and emission ratios of indo-1 in the cytosol or mag-indo-1 in the SR were used to image [Ca2+] in these compartments. Under the conditions of interest, wild-type and mdg cells had similar levels of free [Ca2+] in cytosol and SR. These data suggest that DHPRs play a critical role in reducing the rate of spontaneous opening of Ca2+ release channels and/or their susceptibility to Ca2+-induced activation, thereby suppressing the production of Ca2+ sparks. excitation-contraction coupling; sarcoplasmic reticulum; ryanodine receptors; Ca2+ imaging  相似文献   
29.
This paper attempts to review in how far thermodynamic analysis can be used to understand and predict the performance of microorganisms with respect to growth and bio-product synthesis. In the first part, a simple thermodynamic model of microbial growth is developed which explains the relationship between the driving force for growth in terms of Gibbs energy dissipation and biomass yield. From the currently available literature, it appears that the Gibbs energy dissipation per C-mol of biomass grown, which represents the driving force for chemotrophic growth, may have been adapted by evolutionary processes to strike a reasonable compromise between metabolic rate and growth efficiency. Based on empirical correlations of the C-molar Gibbs energy dissipation, the wide variety of biomass yields observed in nature can be explained and roughly predicted. This type of analysis may be highly useful in environmental applications, where such wide variations occur. It is however not able to predict biomass yields in very complex systems such as mammalian cells nor is it able to predict or to assess bio-product or recombinant protein yields. For this purpose, a much more sophisticated treatment that accounts for individual metabolic pathways separately is required. Based on glycolysis as a test example, it is shown in the last part that simple thermodynamic analysis leads to erroneous conclusions even in well-known, simple cases. Potential sources for errors have been analyzed and can be used to identify the most important needs for future research.  相似文献   
30.
Yuan J  Ghosal G  Chen J 《Molecular cell》2012,47(3):410-421
Proteins with annealing activity are newly identified ATP-dependent motors that can rewind RPA-coated complementary single-stranded DNA bubbles. AH2 (annealing helicase 2, also named as ZRANB3) is the second protein with annealing activity, the function of which is still unknown. Here, we report that AH2 is recruited to stalled replication forks and that cells depleted of AH2 are hypersensitive to replication stresses. Furthermore, AH2 binds to PCNA, which is crucial for its function at stalled replication forks. Interestingly, we identified a HARP-like (HPL) domain in AH2 that is indispensible for its annealing activity in?vitro and its function in?vivo. Moreover, searching of HPL domain in SNF2 family of proteins led to the identification of SMARCA1 and RAD54L, both of which possess annealing activity. Thus, this study not only demonstrates the in?vivo functions of AH2, but also reveals a common feature of this new subfamily of proteins with annealing activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号