首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8832篇
  免费   685篇
  国内免费   832篇
  10349篇
  2024年   40篇
  2023年   169篇
  2022年   364篇
  2021年   596篇
  2020年   385篇
  2019年   430篇
  2018年   438篇
  2017年   327篇
  2016年   407篇
  2015年   578篇
  2014年   661篇
  2013年   687篇
  2012年   842篇
  2011年   735篇
  2010年   457篇
  2009年   385篇
  2008年   423篇
  2007年   371篇
  2006年   314篇
  2005年   263篇
  2004年   214篇
  2003年   182篇
  2002年   149篇
  2001年   106篇
  2000年   112篇
  1999年   105篇
  1998年   84篇
  1997年   87篇
  1996年   55篇
  1995年   56篇
  1994年   71篇
  1993年   34篇
  1992年   38篇
  1991年   33篇
  1990年   25篇
  1989年   31篇
  1988年   16篇
  1987年   15篇
  1986年   10篇
  1985年   20篇
  1984年   6篇
  1983年   8篇
  1982年   7篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1975年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
112.
Wang  Shen  Lin  Haipeng  Zhao  Tiantian  Huang  Sisi  Fernig  David G.  Xu  Nuo  Wu  Fenfang  Zhou  Mi  Jiang  Chao  Tian  Haishan 《Applied microbiology and biotechnology》2017,101(21):7823-7835

Fibroblast growth factor (FGF) 9 has oncogenic activity and plays an important role in the development of ovarian, lung, prostate, and gastric cancers. In the present study, with the aim of reducing the cost of utilizing growth factors in cancer research, a simple and efficient method for the preparation of recombinant human (rh)FGF9 in Escherichia coli was established. The rhFGF9 fusion protein (6 × His-TEV-rhFGF9) and the native protein released by tobacco etch virus (TEV) protease were obtained using a Ni-NTA system, with > 95% purity. Both purified forms of rhFGF9, with and without fusion tags, significantly stimulated the proliferation of NIH3T3 cells. The FGF9 subfamily, including FGF9, FGF16, and FGF20, in addition to rhFGF16, rhFGF9, and rhFGF20, were shown to stimulate the proliferation and migration of HuH7 human hepatocellular carcinoma (HCC) cells. Mechanistic studies revealed that the stimulation of HuH7 cell proliferation and migration with rhFGF9 and rhFGF20 were associated with the activation of the extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) pathways and matrix metalloproteinase-26 (MMP26). Inhibition of the ERK and NF-κB pathways blocked cell migration, and NF-κB was demonstrated to be regulated by ERK. Therefore, the present study demonstrates a simple method for the preparation of biologically active rhFGF9 protein. Furthermore, the results indicate that exogenous rhFGF9- and rhFGF20-activated ERK/NF-κB signal transduction pathways play important roles in the regulation of HCC cell proliferation and migration, and this discovery helps to find the potential for new solutions of the treatment of liver cancer.

  相似文献   
113.
Growth and wood and bark properties of Abies faxoniana seedlings after one year's exposure to elevated CO2 concentration (ambient 350 (=1= 25) μmol/mol) under two planting densities (28 or 84 plants/mz) were investigated in closed-top chambers. Tree height, stem diameter and cross-sectional area, and total biomass were enhanced under elevated CO2 concentration, and reduced under high planting density. Most traits of stem bark were improved under elevated CO2 concentration and reduced under high planting density. Stem wood production was significantly increased in volume under elevated CO2 concentration under both densities, and the stem wood density decreased under elevated CO2 concentration and increased under high planting density. These results suggest that the response of stem wood and bark to elevated CO2 concentration is density dependent. This may be of great importance in a future CO2 enriched world in natural forests where plant density varies considerably. The results also show that the bark/wood ratio in diameter, stem cross-sectional area and dry weight are not proportionally affected by elevated CO2 concentration under the two contrasting planting densities. This indicates that the response magnitude of stem bark and stem wood to elevated CO2 concentration are different but their response directions are the same.  相似文献   
114.
115.
116.
117.
We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ70-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe–S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT) from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation.  相似文献   
118.

Background

Apis mellifera and Apis cerana are two sibling species of Apidae. Apis cerana is adept at collecting sporadic nectar in mountain and forest region and exhibits stiffer hardiness and acarid resistance as a result of natural selection, whereas Apis mellifera has the advantage of producing royal jelly. To identify differentially expressed genes (DEGs) that affect the development of hypopharyngeal gland (HG) and/or the secretion of royal jelly between these two honeybee species, we performed a digital gene expression (DGE) analysis of the HGs of these two species at three developmental stages (newly emerged worker, nurse and forager).

Results

Twelve DGE-tag libraries were constructed and sequenced using the total RNA extracted from the HGs of newly emerged workers, nurses, and foragers of Apis mellifera and Apis cerana. Finally, a total of 1482 genes in Apis mellifera and 1313 in Apis cerana were found to exhibit an expression difference among the three developmental stages. A total of 1417 DEGs were identified between these two species. Of these, 623, 1072, and 462 genes showed an expression difference at the newly emerged worker, nurse, and forager stages, respectively. The nurse stage exhibited the highest number of DEGs between these two species and most of these were found to be up-regulated in Apis mellifera. These results suggest that the higher yield of royal jelly in Apis mellifera may be due to the higher expression level of these DEGs.

Conclusions

In this study, we investigated the DEGs between the HGs of two sibling honeybee species (Apis mellifera and Apis cerana). Our results indicated that the gene expression difference was associated with the difference in the royal jelly yield between these two species. These results provide an important clue for clarifying the mechanisms underlying hypopharyngeal gland development and the production of royal jelly.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-744) contains supplementary material, which is available to authorized users.  相似文献   
119.
This report describes the identification of a new toxigenic strain of Bacillus thuringiensis specific for long-horned beetles. B. thuringiensis Bt866 encodes a cry3Aa-like gene (Bt886cry3Aa) that is 1,956 bp in length and is predicted to encode an 85.78-kDa protein. The gene is highly similar to cry3Aa1, differing in only six nucleotides and four amino acids. The four disparate amino acids occur within the conserved domains of the Cry3Aa toxin. The expression of Bt866cry3A in Escherichia coli cells resulted in a high level of toxicity toward Apriona germari Hope larvae. More than 75% of the larvae were killed; and the remaining survivors exhibited slower growth. These results indicate that the toxigenic strain Bt886cry3Aa encodes a protein that is specific against long-horned beetles. Genetic engineering of the Bt866cry3Aa gene into poplar plantations may provide resistance to long-horned beetles.  相似文献   
120.
Ryu J  Liu L  Wong TP  Wu DC  Burette A  Weinberg R  Wang YT  Sheng M 《Neuron》2006,49(2):175-182
Dendritic spines show rapid motility and plastic morphology, which may mediate information storage in the brain. It is presently believed that polymerization/depolymerization of actin is the primary determinant of spine motility and morphogenesis. Here, we show that myosin IIB, a molecular motor that binds and contracts actin filaments, is essential for normal spine morphology and dynamics and represents a distinct biophysical pathway to control spine size and shape. Myosin IIB is enriched in the postsynaptic density (PSD) of neurons. Pharmacologic or genetic inhibition of myosin IIB alters protrusive motility of spines, destabilizes their classical mushroom-head morphology, and impairs excitatory synaptic transmission. Thus, the structure and function of spines is regulated by an actin-based motor in addition to the polymerization state of actin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号