首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3545篇
  免费   265篇
  国内免费   379篇
  4189篇
  2024年   26篇
  2023年   84篇
  2022年   178篇
  2021年   270篇
  2020年   215篇
  2019年   213篇
  2018年   192篇
  2017年   158篇
  2016年   176篇
  2015年   243篇
  2014年   279篇
  2013年   300篇
  2012年   351篇
  2011年   285篇
  2010年   139篇
  2009年   159篇
  2008年   132篇
  2007年   128篇
  2006年   120篇
  2005年   76篇
  2004年   62篇
  2003年   67篇
  2002年   44篇
  2001年   35篇
  2000年   38篇
  1999年   28篇
  1998年   21篇
  1997年   21篇
  1996年   18篇
  1995年   17篇
  1994年   25篇
  1993年   12篇
  1992年   18篇
  1991年   14篇
  1990年   7篇
  1989年   5篇
  1988年   8篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1983年   3篇
  1982年   2篇
  1979年   3篇
排序方式: 共有4189条查询结果,搜索用时 15 毫秒
121.
以南京老山1 hm 2样地秤锤树(Sinojackia xylocarpa)天然种群为研究对象,运用成对g(r)函数,选择完全随机模型、异质泊松模型与先决条件零模型,分析秤锤树种群结构和空间分布格局及其空间关联性,从空间格局角度来深入认识其种群结构和分布格局及形成该格局可能存在的机制并提出保护建议。结果表明:(1)秤锤树天然种群中小径个体数量占优,属于增长型种群。(2)种内空间分布研究中,基于完全随机模型分析,秤锤树种群在尺度0~26 m时为聚集分布,尺度29~30 m时为均匀分布;基于异质泊松模型分析,秤锤树种群在0~23 m时为聚集分布,尺度27~30 m时为均匀分布。秤锤树空间分布表现为由聚集分布向均匀分布变化。(3)主要种间关联性研究中,秤锤树与朴树(Celtis sinensis)的种间关联性表现为小尺度下负关联,随着空间尺度的增加变为正关联。秤锤树与黄连木(Pistacia chinensis)和秤锤树与三角槭(Acer buergerianum)的种间关联性大致相同,基本为大尺度下正关联,偶尔出现负关联和无关联。上述结果表明,秤锤树种群更新状况良好,种群空间分布以聚集分布为主,其主要受种间竞争、扩散限制与密度制约的影响。基于种群现状开展就地保护与适当干扰其生存群落,是濒危物种秤锤树的科学有效的保护措施。  相似文献   
122.
目的:在大肠杆菌中表达肠出血性大肠杆菌(EHEC)毒力岛上的毒力因子Z1444并纯化,对其丝/苏氨酸激酶活性进行初步检测。方法:根据GenBank中Z1444基因序列及pET-28a(+)载体的多克隆位点设计引物,以EHECO157∶H7全菌裂解液为模板,经PCR钓取1047 bp的目的片段,与表达载体pET-28a(+)连接,构建重组表达质粒pET-28a(+)-Z1444,将其转化至大肠杆菌BL21(DE3)中,IPTG诱导蛋白表达并经SDS-PAGE鉴定,利用体外反应体系鉴定重组蛋白的丝/苏氨酸激酶活性。结果:双酶切和测序鉴定表明,pET-28a(+)-Z1444原核表达质粒构建正确;诱导表达后经纯化,获得纯度在90%以上的可溶性重组Z1444,相对分子量约为38×103;体外酶活实验验证了Z1444的丝/苏氨酸激酶活性。结论:Z1444在大肠杆菌中获得高效可溶性表达,为后续功能验证奠定了基础。  相似文献   
123.
With 84 native species, China is a center of distribution of the genus Salvia (Lamiaceae). These species are mainly distributed in Yunnan and Sichuan provinces (southwestern China), notably the Hengduan Mountain region. Traditionally, the Chinese Salvia has been classified into four subgenera, Salvia, Sclarea, Jungia, and Allagospadonopsis. We tested this classification using molecular phylogenetic analysis of 43 species of Salvia from China, six from Japan, and four introduced species. The nuclear ribosomal internal transcribed spacer region and three chloroplast regions (rbcL, matK, and trnH-psbA) were analyzed by maximum parsimony, maximum likelihood, and Bayesian methods. Our results showed that the Chinese (except Salvia deserta) and Japanese Salvia species formed a well-supported clade; S. deserta from Xinjiang grouped with Salvia officinalis of Europe. In addition, all introduced Salvia species in China were relatively distantly related to the native Chinese Salvia. Our results differed from the subgeneric and section classifications in Flora Reipublicae Popularis Sinicae. We suggested that sections Eusphace and Pleiphace should be united in a new subgenus and that sect. Notiosphace should be removed from subg. Sclarea and form a new subgenus. Our data could not distinguish a boundary between subg. Allagospadonopsis and sect. Drymosphace (subg. Sclarea); the latter should be reduced into the former. Further clarification of the phylogenetic relationships within Salvia and between Salvia and related genera will require broader taxonomic sampling and more molecular markers.  相似文献   
124.
Influenza A virus NS2 protein, also called nuclear export protein (NEP), is crucial for the nuclear export of viral ribonucleoproteins. However, the molecular mechanisms of NEP mediation in this process remain incompletely understood. A leucine-rich nuclear export signal (NES2) in NEP, located at the predicted N2 helix of the N-terminal domain, was identified in the present study. NES2 was demonstrated to be a transferable NES, with its nuclear export activity depending on the nuclear export receptor chromosome region maintenance 1 (CRM1)-mediated pathway. The interaction between NEP and CRM1 is coordinately regulated by both the previously reported NES (NES1) and now the new NES2. Deletion of the NES1 enhances the interaction between NEP and CRM1, and deletion of the NES1 and NES2 motifs completely abolishes this interaction. Moreover, NES2 interacts with CRM1 in the mammalian two-hybrid system. Mutant viruses containing NES2 alterations generated by reversed genetics exhibit reduced viral growth and delay in the nuclear export of viral ribonucleoproteins (vRNPs). The NES2 motif is highly conserved in the influenza A and B viruses. The results demonstrate that leucine-rich NES2 is involved in the nuclear export of vRNPs and contributes to the understanding of nucleocytoplasmic transport of influenza virus vRNPs.  相似文献   
125.
Oxidized low-density lipoprotein (Ox-LDL)-induced endothelial cell injury plays a crucial role in the pathogenesis of atherosclerosis (AS). Plasma galectin-3 (Gal-3) is elevated inside and drives diverse systemic inflammatory disorders, including cardiovascular diseases. However, the exact role of Gal-3 in ox-LDL-mediated endothelial injury remains unclear. This study explores the effects of Gal-3 on ox-LDL-induced endothelial dysfunction and the underlying molecular mechanisms. In this study, Gal-3, integrin β1, and GTP-RhoA in the blood and plaques of AS patients were examined by ELISA and western blot respectively. Their levels were found to be obviously upregulated compared with non-AS control group. CCK8 assay and flow cytometry analysis showed that Gal-3 significantly decreased cell viability and promoted apoptosis in ox-LDL-treated human umbilical vascular endothelial cells (HUVECs). The upregulation of integrinβ1, GTP-RhoA, p-JNK, p-p65, p-IKKα, and p-IKKβ induced by ox-LDL was further enhanced by treatment with Gal-3. Pretreatment with Gal-3 increased expression of inflammatory factors (interleukin [IL]-6, IL-8, and IL-1β), chemokines(CXCL-1 and CCL-2) and adhesion molecules (VCAM-1 and ICAM-1). Furthermore, the promotional effects of Gal-3 on NF-κB activation and inflammatory factors in ox-LDL-treated HUVECs were reversed by the treatments with integrinβ1-siRNA or the JNK inhibitor. We also found that integrinβ1-siRNA decreased the protein expression of GTP-RhoA and p-JNK, while RhoA inhibitor partially reduced the upregulated expression of p-JNK induced by Gal-3. In conclusion, our finding suggests that Gal-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation.  相似文献   
126.
As performance of halide perovskite devices progresses, the device structure becomes more complex with more layers. Molecular interfacial structures between different layers play an increasingly important role in determining the overall performance in a halide perovskite device. However, current understanding of such interfacial structures at a molecular level nondestructively is limited, partially due to a lack of appropriate analytical tools to probe buried interfacial molecular structures in situ. Here, sum frequency generation (SFG) vibrational spectroscopy, a state‐of‐the‐art nonlinear interface sensitive spectroscopy, is introduced to the halide perovskite research community and is presented as a powerful tool to understand molecule behavior at buried halide perovskite interfaces in situ. It is found that interfacial molecular orientations revealed by SFG can be directly correlated to halide perovskite device performance. Here how SFG can examine molecular structures (e.g., orientations) at the perovskite/hole transporting layer and perovskite/electron transporting layer interfaces is discussed. This will promote the use of SFG to investigate molecular structures of buried interfaces in various halide perovskite materials and devices in situ nondestructively with a sub‐monolayer interface sensitivity. Such research will help to elucidate structure–function relationships of buried interfaces, aiding in the rational design/development of halide perovskite materials/devices with improved performance.  相似文献   
127.
Nicorandil exerts myocardial protection through its antihypoxia and antioxidant effects. Here, we investigated whether it plays an anti‐apoptotic role in diabetic cardiomyopathy. Sprague‐Dawley rats were fed with high‐fat diet; then single intraperitoneal injection of streptozotocin was performed. Rats with fasting blood glucose (FBG) higher than 11.1 mmol/L were selected as models. Eight weeks after the models were built, rats were treated with nicorandil (7.5 mg/kg day and 15 mg/kg day respectively) for 4 weeks. H9c2 cardiomyocytes were treated with nicorandil and then stimulated with high glucose (33.3 mmol/L). TUNEL assay and level of bcl‐2, bax and caspase‐3 were measured. 5‐HD was used to inhibit nicorandil. Also, PI3K inhibitor (Miltefosine) and mTOR inhibitor (rapamycin) were used to inhibit PI3K/Akt pathway. The results revealed that nicorandil (both 7.5 mg/kg day and 15mg/kg day) treatment can increase the level of NO in the serum and eNOS in the heart of diabetic rats compared with the untreated diabetic group. Nicorandil can also improve relieve cardiac dysfunction and reduce the level of apoptosis. In vitro experiments, nicorandil (100 µmol) can attenuate the level of apoptosis stimulated by high glucose significantly in H9C2 cardiomyocyte compared with the untreated group. The effect of nicorandil on apoptosis was blocked by 5‐HD, and it was accompanied with inhibition of the phosphorylation of PI3K, Akt, eNOS, and mTOR. After inhibition of PI3K/Akt pathway, the protective effect of nicorandil is restrained. These results verified that as a NO donor, nicorandil can also inhibit apoptosis in diabetic cardiomyopathy which is mediated by PI3K/Akt pathway.  相似文献   
128.
To find histone deacetylase 3 (HDAC3)-selective inhibitors, a series of 504 candidates was assembled using “click chemistry”, by reacting nine alkynes bearing a zinc-binding group with 56 azide building blocks in the presence of Cu(I) catalyst. Screening of the 504-member triazole library against HDAC3 and other HDAC isozymes led to the identification of potent and selective HDAC3 inhibitors T247 and T326. These compounds showed potent HDAC3 inhibition with submicromolar IC50s, whereas they did not strongly inhibit other isozymes. Compounds T247 and T326 also induced a dose-dependent selective increase of NF-κB acetylation in human colon cancer HCT116 cells, indicating selective inhibition of HDAC3 in the cells. In addition, these HDAC3-selective inhibitors induced growth inhibition of cancer cells, and activated HIV gene expression in latent HIV-infected cells. These findings indicate that HDAC3-selective inhibitors are promising candidates for anticancer drugs and antiviral agents. This work also suggests the usefulness of the click chemistry approach to find isozyme-selective HDAC inhibitors.  相似文献   
129.
Dissecting complex interactions between species and their environments has long been a research hot spot in the fields of ecology and evolutionary biology. The well‐recognized Darwinian evolution has well‐explained long‐term adaptation scenarios; however, “rapid” processes of biological responses to environmental changes remain largely unexplored, particularly molecular mechanisms such as DNA methylation that have recently been proposed to play crucial roles in rapid environmental adaptation. Invasive species, which have capacities to successfully survive rapidly changing environments during biological invasions, provide great opportunities to study molecular mechanisms of rapid environmental adaptation. Here, we used the methylation‐sensitive amplified polymorphism (MSAP) technique in an invasive model ascidian, Ciona savignyi, to investigate how species interact with rapidly changing environments at the whole‐genome level. We detected quite rapid DNA methylation response: significant changes of DNA methylation frequency and epigenetic differentiation between treatment and control groups occurred only after 1 hr of high‐temperature exposure or after 3 hr of low‐salinity challenge. In addition, we detected time‐dependent hemimethylation changes and increased intragroup epigenetic divergence induced by environmental stresses. Interestingly, we found evidence of DNA methylation resilience, as most stress‐induced DNA methylation variation maintained shortly (~48 hr) and quickly returned back to the control levels. Our findings clearly showed that invasive species could rapidly respond to acute environmental changes through DNA methylation modifications, and rapid environmental changes left significant epigenetic signatures at the whole‐genome level. All these results provide fundamental background to deeply investigate the contribution of DNA methylation mechanisms to rapid contemporary environmental adaptation.  相似文献   
130.
Solution‐processed perovskite solar cells have great potential for low‐cost roll‐to‐roll fabrication. However, the degradation of aged precursor solutions will become a critical obstacle to mass production. In this report, a small molecule (ITIC‐Th) is employed to stabilize the perovskite precursor solution containing mixed cations and halides. It is found that ITIC‐Th can effectively suppress the formation of yellow δ‐phase in the films made from aged precursor solutions. Consequently, the devices fabricated from the aged precursor solution with ITIC‐Th experience much less efficiency drop with the increase of the precursor aging time—from 19.20% (fresh) to 16.55% (39 d), compared with the devices made from conventional precursor solutions dropping from 18.07% (fresh) to 1.76% (39 d). The characterizations suggest that ITIC‐Th is beneficial for CH3NH3+ cations to be incorporated into the crystal structure, facilitating the formation of perovskite phase. Furthermore, the presence of ITIC‐Th in the perovskite thin film gives rise to additional photocurrent as well as improved fill factor due to the well‐matched energy levels, the passivation of defects, and the complementary absorption spectra, suggesting a new route toward future high‐efficiency solar cells—incorporating organic non‐fullerene acceptors and halide perovskite materials into the same active layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号