首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3174篇
  免费   298篇
  国内免费   355篇
  2024年   23篇
  2023年   84篇
  2022年   150篇
  2021年   255篇
  2020年   176篇
  2019年   195篇
  2018年   214篇
  2017年   132篇
  2016年   170篇
  2015年   255篇
  2014年   266篇
  2013年   267篇
  2012年   311篇
  2011年   222篇
  2010年   116篇
  2009年   121篇
  2008年   138篇
  2007年   114篇
  2006年   95篇
  2005年   69篇
  2004年   63篇
  2003年   73篇
  2002年   82篇
  2001年   39篇
  2000年   33篇
  1999年   22篇
  1998年   24篇
  1997年   13篇
  1996年   16篇
  1995年   10篇
  1994年   13篇
  1993年   5篇
  1992年   5篇
  1991年   16篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   4篇
  1983年   4篇
  1982年   3篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有3827条查询结果,搜索用时 265 毫秒
91.
Vein grafts interposed into arteries are susceptible to the development of atherosclerosis due to rapid increases in blood pressure. This process is accelerated in patients with hyperlipidemia. The molecular mechanism underlying this process is unknown. In this study, quiescent rat vascular smooth muscle cells (VSMCs) were treated in vitro with mechanical stretch stress (10% elongation) with and without oxLDL (25 μg/ml) in the presence and absence of simvastatin (2.5 μmol/L). The results demonstrate that stretch stress and oxLDL can each induce activation of ERK1/2 and Ki-67 expression in VSMCs, but the peak levels of ERK activation and Ki-67 expression were observed in groups subjected to both stretch stress and oxLDL. Simvastatin was found to inhibit increased ERK activation and Ki-67 expression in VSMCs subjected to stretch stress with or without oxLDL. Mechanically, simvastatin was also found to inhibit increased expression of LOX-1 (a receptor of oxLDL) in VSMCs subjected to stretch stress with or without oxLDL. Knockdown of LOX-1 via small interfering RNAs (siRNA-LOX-1) resulted in obvious inhibition of ERK activation in VSMCs subjected to stretch stress with and without oxLDL. These results suggest that combined stretch stress and oxLDL can additively promote the activation of ERK1/2 leading to accelerated proliferation of VSMCs (e.g. increased Ki-67 expression) via LOX-1 signal pathway. This was found to be partially inhibited by simvastatin. These results may provide important data for the treatment and prevention of hypertension with or without hyperlipidemia.  相似文献   
92.
Tetrahydropalmatine (THP), with one chiral center, is an alkaloid that possesses analgesic and many other pharmacological actives. The aim of the present study is to investigate stereoselective metabolism of THP enantiomers in human liver microsomes (HLM) and elucidate which cytochrome P450 (CYP) isoforms contribute to the stereoselective metabolism in HLM. Additionally, the inhibitions of THP enantiomers on activity of CYP enzymes are also investigated. The results demonstrated that (+)‐THP was preferentially metabolized by HLM. Ketoconazole (inhibitor of CYP3A4/5) inhibited metabolism of (?)‐THP or (+)‐THP at same degree, whereas the inhibition of fluvoxamine (inhibitor of CYP1A2) on metabolism of (+)‐THP was greater than that of (?)‐THP; moreover, the metabolic rate of (+)‐THP was 5.3‐fold of (?)‐THP in recombinant human CYP1A2. Meanwhile, THP enantiomers did not show obvious inhibitory effect on the activity of various CYP isoforms (CYP1A2, 2A6, 2C8, 2C9, 2C19, 2E1, and 3A4/5), whereas (?)‐THP, but not (+)‐THP, significantly inhibited the activity of CYP2D6 with the Ki value of 6.42 ± 0.38 μM. The results suggested that THP enantiomers were predominantly metabolized by CYP3A4/5 and CYP1A2 in HLM, and (+)‐THP was preferentially metabolized by CYP1A2, whereas CYP3A4/5 contributed equally to metabolism of (?)‐THP or (+)‐THP. Besides, the inhibition of CYP2D6 by (?)‐THP may cause drug–drug interaction, which should be considered. Chirality 25:43–47, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
93.
94.
The relationships of extant and extinct lineages of Adephaga were analysed formally for the first time. Emphasis is placed on the aquatic and semiaquatic groups and their evolution in the Mesozoic. ?Triadogyrus and ?Mesodineutus belong to Gyrinidae, the sister group of the remaining families. ?Triaplidae are the sister group of the following groups (Haliplidae, Geadephaga, Dytiscoidea incl. ?Liadytidae, ?Parahygrobiidae and ?Coptoclavidae [major part]). The lack of a ventral procoxal joint and a very short prosternal process are plesiomorphies of ?Triaplidae. ?Coptoclavidae and ?Timarchopsinae are paraphyletic. ?Timarchopsis is placed in a geadephagan clade. In contrast to other coptoclavids, its metathorax is close to the condition found in Haliplidae, with a complete transverse ridge and coxae with large plates and free mesal walls. ?Coptoclavidae s.str., i.e. excl. ?Timarchopsis, is a dytiscoid subgroup. The mesal metacoxal walls are fused, the coxal plates are reduced, and the transverse ridge is absent. ?Stygeonectes belongs to this dytiscoid coptoclavid unit and is therefore misplaced in ?Timarchopsinae. ?Liadytidae belongs to a dytiscoid subgroup, which also comprises the extant families Aspidytidae, Amphizoidae, Hygrobiidae and Dytiscidae. ?Parahygrobia is the sister group of Hygrobiidae. The larvae are characterized by a broad gula, the absence of the lacinia, retractile maxillary bases and very long urogomphi set with long setae. ?Liadytiscinae is the sister group of extant Dytiscidae. There is no support for a clade ?Eodromeinae and for Trachypachidae incl. ?Eodromeinae. ?Fortiseode is nested within Carabidae. The exclusion of fossil taxa has no effect on the branching pattern. The evolution of Adephaga in the Mesozoic is discussed. Possible reasons for the extinction of ?Coptoclavidae are the rise of teleost fish and the competition of Gyrinidae and Dytiscidae, which possess efficient defensive glands and larval mandibular sucking channels.  相似文献   
95.
96.
Influenza A virus NS2 protein, also called nuclear export protein (NEP), is crucial for the nuclear export of viral ribonucleoproteins. However, the molecular mechanisms of NEP mediation in this process remain incompletely understood. A leucine-rich nuclear export signal (NES2) in NEP, located at the predicted N2 helix of the N-terminal domain, was identified in the present study. NES2 was demonstrated to be a transferable NES, with its nuclear export activity depending on the nuclear export receptor chromosome region maintenance 1 (CRM1)-mediated pathway. The interaction between NEP and CRM1 is coordinately regulated by both the previously reported NES (NES1) and now the new NES2. Deletion of the NES1 enhances the interaction between NEP and CRM1, and deletion of the NES1 and NES2 motifs completely abolishes this interaction. Moreover, NES2 interacts with CRM1 in the mammalian two-hybrid system. Mutant viruses containing NES2 alterations generated by reversed genetics exhibit reduced viral growth and delay in the nuclear export of viral ribonucleoproteins (vRNPs). The NES2 motif is highly conserved in the influenza A and B viruses. The results demonstrate that leucine-rich NES2 is involved in the nuclear export of vRNPs and contributes to the understanding of nucleocytoplasmic transport of influenza virus vRNPs.  相似文献   
97.
We have investigated whether simultaneous modification of cofactor metabolism and glycerol in a strain of Saccharomyces cerevisiae can eliminate glycerol synthesis during ethanol production. Two strains, S812 (gpd1Δ gpd2Δ PGK1p-GLT1) and LE17 (gpd1Δ gpd2Δ PGK1p-GLT1 PGKp-STL1) were generated that showed a 8 and 8.2 % increase in the ethanol yield, respectively, compared to the wild type KAM-2 strain. The ethanol titer was improved from 90.4 g/l for KAM-2 to 97.6 g/l for S812 and 97.8 g/l for LE17, respectively. These results provide a new insight into rationalization of metabolic engineering strategies for improvement of ethanol yield through elimination of glycerol production.  相似文献   
98.
We have previously analyzed the proteome of recombinant Escherichia coli producing poly(3-hydroxybutyrate) [P(3HB)] and revealed that the expression level of several enzymes in central metabolism are proportional to the amount of P(3HB) accumulated in the cells. Based on these results, the amplification effects of triosephosphate isomerase (TpiA) and fructose-bisphosphate aldolase (FbaA) on P(3HB) synthesis were examined in recombinant E. coli W3110, XL1-Blue, and W lacI mutant strains using glucose, sucrose and xylose as carbon sources. Amplification of TpiA and FbaA significantly increased the P(3HB) contents and concentrations in the three E. coli strains. TpiA amplification in E. coli XL1-Blue lacI increased P(3HB) from 0.4 to 1.6 to g/l from glucose. Thus amplification of glycolytic pathway enzymes is a good strategy for efficient production of P(3HB) by allowing increased glycolytic pathway flux to make more acetyl-CoA available for P(3HB) biosynthesis.  相似文献   
99.
Microbial-surface display is the expression of proteins or peptides on the surface of cells by fusing an appropriate protein as an anchoring motif. Here, the outer membrane protein W (OmpW) was selected as a fusion partner for functional expression of Pseudomonas fluorescence SIK W1 lipase (TliA) on the cell-surface of Escherichia coli. Localization of the truncated OmpW-TliA fusion protein on the cell-surface was confirmed by immunoblotting and functional assay of lipase activity. Enantioselective hydrolysis of rac-phenylethyl butanoate by the displayed lipase resulted in optically active (R)-phenyl ethanol with 96 % enantiomeric excess and 44 % of conversion in 5 days. Thus, a small outer membrane protein OmpW, is a useful anchoring motif for displaying an active enzyme of ~50 kDa on the cell-surface and the surface-displayed lipase can be employed as an enantioselective biocatalyst in organic synthesis.  相似文献   
100.
Nitrogen is a major limiting nutrient for the net primary production of terrestrial ecosystems, especially on sentinel alpine ecosystem. Ammonia oxidation is the first and rate-limiting step on nitrification process and is thus crucial to nitrogen cycle. To decipher climatic influence on ammonia oxidizers, their communities were characterized by qPCR and clone sequencing by targeting amoA genes (encoding the alpha subunit of ammonia mono-oxygenase) in soils from 7 sites over an 800 m elevation transect (4400–5200 m a.s.l.), based on “space-to-time substitution” strategy, on a steppe-meadow ecosystem located on the central Tibetan Plateau (TP). Archaeal amoA abundance outnumbered bacterial amoA abundance at lower altitude (<4800 m a.s.l.), but bacterial amoA abundance was greater in surface soils at higher altitude (≥4800 m a.s.l.). Archaeal amoA abundance decreased with altitude in surface soil, while its abundance stayed relatively stable and was mostly greater than bacterial amoA abundance in subsurface soils. Conversely, bacterial amoA abundance gradually increased with altitude at all three soil depths. Statistical analysis indicated that altitude-dependent factors, in particular pH and precipitation, had a profound effect on the abundance and community of ammonia-oxidizing bacteria, but only on the community composition of ammonia-oxidizing archaea along the altitudinal gradient. These findings imply that the shifts in the relative abundance and/or community structure of ammonia-oxidizing bacteria and archaea may result from the precipitation variation along the altitudinal gradient. Thus, we speculate that altitude-related factors (mainly precipitation variation combing changed pH), would play a vital role in affecting nitrification process on this alpine grassland ecosystem located at semi-arid area on TP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号