首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3320篇
  免费   302篇
  国内免费   84篇
  2022年   47篇
  2021年   72篇
  2020年   52篇
  2019年   59篇
  2018年   39篇
  2017年   52篇
  2016年   57篇
  2015年   133篇
  2014年   155篇
  2013年   159篇
  2012年   229篇
  2011年   214篇
  2010年   131篇
  2009年   107篇
  2008年   153篇
  2007年   173篇
  2006年   136篇
  2005年   136篇
  2004年   111篇
  2003年   80篇
  2002年   83篇
  2001年   89篇
  2000年   87篇
  1999年   61篇
  1998年   45篇
  1997年   24篇
  1996年   20篇
  1995年   25篇
  1994年   36篇
  1993年   27篇
  1992年   42篇
  1991年   48篇
  1990年   57篇
  1989年   62篇
  1988年   44篇
  1987年   63篇
  1986年   46篇
  1985年   33篇
  1984年   39篇
  1983年   19篇
  1982年   27篇
  1981年   19篇
  1979年   27篇
  1978年   23篇
  1977年   20篇
  1976年   30篇
  1975年   17篇
  1974年   21篇
  1973年   17篇
  1972年   26篇
排序方式: 共有3706条查询结果,搜索用时 78 毫秒
171.
The prion protein (PrP) is crucially involved in transmissible spongiform encephalopathies (TSE), but neither its exact role in disease nor its physiological function are known. Here we show for mice, using histological, immunochemical and PCR-based methods, that stimulation of innate resistance was followed by appearance of numerous endogenous retroviruses and ensuing PrP up-regulation in germinal centers of the spleen. Subsequently, the activated retroviruses disappeared in a PrP-dependent manner. Our results reveal the regular involvement of endogenous retroviruses in murine immune responses and provide evidence for an essential function of PrP in the control of the retroviral activity. The interaction between PrP and ubiquitous endogenous retroviruses may allow new interpretations of TSE pathophysiology and explain the evolutionary conservation of PrP.  相似文献   
172.
173.
Objective: To compare subcutaneous adipose tissue topography (SAT‐top) in obese juveniles with age‐matched normal‐weight controls. Research Methods and Procedures: The optical device LIPOMETER (European Patent EP 0516251) enables the non‐invasive, rapid, safe, and precise measurement of the thickness of subcutaneous adipose tissue. Fifteen defined body sites (1 = neck to 15 = calf) characterize the individual SAT‐top like an individual fingerprint. SAT‐top of 1351 juveniles (obese: 42 boys, 59 girls, normal weight: 680 boys, 570 girls) from 7 to 19 years of age were measured. For visual comparison, the 15‐dimensional SAT‐top information was condensed by factor analysis into a two‐dimensional factor plot. Results: Both female and male obese juveniles had markedly increased adipose tissue layers at 7 = upper abdomen, 8 = lower abdomen, 5 = front chest, and 6 = lateral chest. The pubertal changes of body shape and fat distribution of the normal‐weight boys and girls (boys show thinner adipose tissue layers on their legs, whereas girls had thicker adipose tissue layers at the extremities) were not seen in the obese group. Independently of age and sex, all of the obese juveniles showed a similar, more android body fat distribution with increased trunk fat. Discussion: SAT‐top of the obese juveniles is similar to that of patients with type 2 diabetes, polycystic ovary syndrome, and coronary heart disease. Patients with these metabolic disorders and obese juveniles are located in the factor plot in the same area. This body shape may indicate a risk profile for developing polycystic ovary syndrome (women), type 2 diabetes, and early atherosclerosis (both sexes).  相似文献   
174.
175.
176.
MicroRNA-205 (miR-205) is involved in various physiological and pathological processes, but its biological function in follicular atresia remains unclear. In this study, we investigated miR-205 expression in mouse granulosa cells (mGCs) and analyzed its functions in primary mGCs by performing a series of in vitro experiments. Quantitative real-time polymerase chain reaction showed that miR-205 expression was significantly higher in early atretic follicles and progressively atretic follicles than in healthy follicles. miR-205 overexpression in mGCs significantly promoted apoptosis and caspase-3/9 activities, as well as inhibited estrogen (E2) release and cytochrome P450 family 19 subfamily A polypeptide 1 (CYP19A1, a key gene in E2 production) expression. Bioinformatics and luciferase reporter assays revealed that the gene encoding cyclic AMP response element (CRE)-binding protein 1 (CREB1) was a direct target of miR-205 in mGCs. CREB1 upregulation partially rescued the effects of miR-205 on apoptosis, caspase-3/9 activities, E2 production, and CYP19A1 expression on mGCs. These results indicate that miR-205 might play an important role in ovarian follicular development and provide new insights into follicular atresia  相似文献   
177.
178.
Aging is associated with dramatic changes to DNA methylation (DNAm), although the causes and consequences of such alterations are unknown. Our ability to experimentally uncover mechanisms of epigenetic aging will be greatly enhanced by our ability to study and manipulate these changes using in vitro models. However, it remains unclear whether the changes elicited by cells in culture can serve as a model of what is observed in aging tissues in vivo. To test this, we serially passaged mouse embryonic fibroblasts (MEFs) and assessed changes in DNAm at each time point via reduced representation bisulfite sequencing. By developing a measure that tracked cellular aging in vitro, we tested whether it tracked physiological aging in various mouse tissues and whether anti‐aging interventions modulate this measure. Our measure, termed CultureAGE, was shown to strongly increase with age when examined in multiple tissues (liver, lung, kidney, blood, and adipose). As a control, we confirmed that the measure was not a marker of cellular senescence, suggesting that it reflects a distinct yet progressive cellular aging phenomena that can be induced in vitro. Furthermore, we demonstrated slower epigenetic aging in animals undergoing caloric restriction and a resetting of our measure in lung and kidney fibroblasts when re‐programmed to iPSCs. Enrichment and clustering analysis implicated EED and Polycomb group (PcG) factors as potentially important chromatin regulators in translational culture aging phenotypes. Overall, this study supports the concept that physiologically relevant aging changes can be induced in vitro and used to uncover mechanistic insights into epigenetic aging.  相似文献   
179.
180.
The epithelial components of the vertebrate inner ear and its associated ganglion arise from the otic placode. The cell types formed include neurons, hair-cell mechanoreceptors, supporting cells, secretory cells that make endolymphatic fluid or otolithic membranes, and simple epithelial cells lining the fluid-filled cavities. The epithelial sheet is surrounded by an inner layer of connective and vascular tissues and an outer capsule of bone. To explore the mechanisms of cell fate specification in the ear, retrovirus-mediated lineage analysis was performed after injecting virus into the chicken otocyst on embryonic days 2.5-5.5. Because lineage analysis might reveal developmental compartments, an effort was made to study clonal dispersion by sampling infected cells from different parts of the same ear, including the auditory ganglion, cochlea, saccule, utricle, and semicircular canals. Lineage relationships were confirmed for 75 clones by amplification and sequencing of a variable DNA tag carried by each virus. While mesenchymal clones could span different structural parts of the ear, epithelial clones did not. The circumscribed epithelial clones indicated that their progenitors were not highly migratory. Ganglion cell clones, in contrast, were more dispersed. There was no evidence for a common lineage between sensory cells and their associated neurons, a prediction based on a proposal that the ear sensory organs and fly mechanosensory organs are evolutionarily homologous. As expected, placodal derivatives were unrelated to adjacent mesenchymal cells or to nonneuronal cells of the ganglion. Within the otic capsule, fibroblasts and cartilage cells could be related by lineage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号