全文获取类型
收费全文 | 10507篇 |
免费 | 826篇 |
国内免费 | 703篇 |
专业分类
12036篇 |
出版年
2024年 | 24篇 |
2023年 | 152篇 |
2022年 | 359篇 |
2021年 | 575篇 |
2020年 | 376篇 |
2019年 | 440篇 |
2018年 | 480篇 |
2017年 | 369篇 |
2016年 | 440篇 |
2015年 | 642篇 |
2014年 | 706篇 |
2013年 | 802篇 |
2012年 | 986篇 |
2011年 | 869篇 |
2010年 | 489篇 |
2009年 | 421篇 |
2008年 | 577篇 |
2007年 | 479篇 |
2006年 | 421篇 |
2005年 | 353篇 |
2004年 | 273篇 |
2003年 | 253篇 |
2002年 | 185篇 |
2001年 | 173篇 |
2000年 | 147篇 |
1999年 | 152篇 |
1998年 | 91篇 |
1997年 | 94篇 |
1996年 | 93篇 |
1995年 | 77篇 |
1994年 | 86篇 |
1993年 | 64篇 |
1992年 | 58篇 |
1991年 | 75篇 |
1990年 | 58篇 |
1989年 | 43篇 |
1988年 | 32篇 |
1987年 | 17篇 |
1986年 | 22篇 |
1985年 | 18篇 |
1984年 | 17篇 |
1983年 | 20篇 |
1982年 | 8篇 |
1980年 | 3篇 |
1978年 | 2篇 |
1975年 | 2篇 |
1973年 | 2篇 |
1971年 | 3篇 |
1968年 | 2篇 |
1966年 | 2篇 |
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
961.
962.
Wei Hong Yange Lang Tian Li Zhengyang Zeng Yu Song Yingliang Wu Wenxin Li Zhijian Cao 《The Journal of biological chemistry》2015,290(38):23254-23263
Viral infection is an early stage of its life cycle and represents a promising target for antiviral drug development. Here we designed and characterized three peptide inhibitors of hepatitis C virus (HCV) infection based on the structural features of the membrane-associated p7 polypeptide of HCV. The three peptides exhibited low toxicity and high stability while potently inhibiting initial HCV infection and suppressed established HCV infection at non-cytotoxic concentrations in vitro. The most efficient peptide (designated H2-3), which is derived from the H2 helical region of HCV p7 ion channel, inhibited HCV infection by inactivating both intracellular and extracellular viral particles. The H2-3 peptide inactivated free HCV with an EC50 (50% effective concentration) of 82.11 nm, which is >1000-fold lower than the CC50 (50% cytotoxic concentration) of Huh7.5.1 cells. H2-3 peptide also bound to cell membrane and protected host cells from viral infection. The peptide H2-3 did not alter the normal electrophysiological profile of the p7 ion channel or block viral release from Huh7.5.1 cells. Our work highlights a new anti-viral peptide design strategy based on ion channel, giving the possibility that ion channels are potential resources to generate antiviral peptides. 相似文献
963.
Xin Wei Rongsheng Wang Lirong Cao Nannan Yuan Juan Huang Weihua Qiao Wanxia Zhang Hanlai Zeng Qingwen Yang 《PloS one》2012,7(11)
China is rich of germplasm resources of common wild rice (Oryza rufipogon Griff.) and Asian cultivated rice (O. sativa L.) which consists of two subspecies, indica and japonica. Previous studies have shown that China is one of the domestication centers of O. sativa. However, the geographic origin and the domestication times of O. sativa in China are still under debate. To settle these disputes, six chloroplast loci and four mitochondrial loci were selected to examine the relationships between 50 accessions of Asian cultivated rice and 119 accessions of common wild rice from China based on DNA sequence analysis in the present study. The results indicated that Southern China is the genetic diversity center of O. rufipogon and it might be the primary domestication region of O. sativa. Molecular dating suggested that the two subspecies had diverged 0.1 million years ago, much earlier than the beginning of rice domestication. Genetic differentiations and phylogeography analyses indicated that indica was domesticated from tropical O. rufipogon while japonica was domesticated from O. rufipogon which located in higher latitude. These results provided molecular evidences for the hypotheses of (i) Southern China is the origin center of O. sativa in China and (ii) the two subspecies of O. sativa were domesticated multiple times. 相似文献
964.
965.
966.
967.
Zhou J Zhang Y Wen X Cao J Li D Lin Q Wang H Liu Z Duan C Wu K Wang C 《Journal of cellular and molecular medicine》2010,14(11):2641-2645
Recently, the presence of telocytes was demonstrated in human and mammalian tissues and organs (digestive and extra-digestive organs, genitourinary organs, heart, placenta, lungs, pleura, striated muscle). Noteworthy, telocytes seem to play a significant role in the normal function and regeneration of myocardium. By cultures of telocytes in two- and three-dimensional environment we aimed to study the typical morphological features as well as functionality of telocytes, which will provide important support to understand their in vivo roles. Neonatal rat cardiomyocytes were isolated and cultured as seeding cells in vitro in two-dimensional environment. Furthermore, engineered myocardium tissue was constructed from isolated cells in three-dimensional collagen/Matrigel scaffolds. The identification of telocytes was performed by using histological and immunohistochemical methods. The results showed that typical telocytes are distributed among cardiomyocytes, connecting them by long telopodes. Telocytes have a typical fusiform cell body with two or three long moniliform telopodes, as main characteristics. The vital methylene blue staining showed the existence of telocytes in primary culture. Immunohistochemistry demonstrated that some c-kit or CD34 immuno-positive cells in engineered heart tissue had the morphology of telocytes, with a typical fusiform cell body and long moniliform telopodes. Also, a significant number of vimentin+ telocytes were present within engineered heart tissue. We suggest that the model of three-dimensional engineered heart tissue could be useful for the ongoing research on the functional relationships of telocytes with cardiomyocytes. Because the heart has the necessary potential of changing the muscle and non-muscle cells during the lifetime, telocytes might play an active role in the heart regeneration process. Moreover, telocytes might be a useful tool for cardiac tissue engineering. 相似文献
968.
Jun Yan Xuefei Cai Jianghong Luo Shusei Sato Qunyi Jiang Jun Yang Xiangling Cao Xiaohe Hu Satoshi Tabata Peter M. Gresshoff Da Luo 《Plant physiology》2010,152(2):797-807
The endogenous trans-acting small interfering RNA (ta-siRNA) pathway plays a conserved role in adaxial-abaxial patterning of lateral organs in simple-leafed plant species. However, its function in compound-leafed species is largely unknown. Using the compound-leafed species Lotus japonicus, we identified and characterized two independent mutants, reduced leaflet1 (rel1) and rel3, whose most conspicuous defects in compound leaves are abaxialized leaflets and reduction in leaflet number. Concurrent mutations in REL genes also compromise flower development and result in radial symmetric floral organs. Positional cloning revealed that REL1 and REL3 encode the homologs of Arabidopsis (Arabidopsis thaliana) SUPPRESSOR OF GENE SILENCING3 and ARGONAUTE7/ZIPPY, respectively, which are key components of the ta-siRNA pathway. These observations, together with the expression and functional data, demonstrated that the ta-siRNA pathway plays conserved yet distinct roles in the control of compound leaf and flower development in L. japonicus. Moreover, the phenotypic alterations of lateral organs in ta-siRNA-deficient mutants and the regulation of downstream targets by the ta-siRNA pathway in L. japonicus were similar to those in the monocots but different from Arabidopsis, indicating many parallels between L. japonicus and the monocots in the control of lateral organ development by the ta-siRNA pathway.Plant endogenous small RNAs can be categorized into microRNAs (miRNAs) and small interfering RNAs (siRNAs) according to their mechanism of biogenesis (Vaucheret, 2006). trans-Acting siRNAs (ta-siRNAs) are one type of siRNA, and their biogenesis requires several key components, such as SUPPRESSOR OF GENE SILENCING3 (SGS3), RNA-DEPENDENT RNA POLYMERASE6 (RDR6), DICER-LIKE4 (DCL4), ARGONAUTE7 (AGO7)/ZIPPY (ZIP), and dsRNA-BINDING4 (Peragine et al., 2004; Vazquez et al., 2004; Gasciolli et al., 2005; Xie et al., 2005; Yoshikawa et al., 2005; Adenot et al., 2006; Nakazawa et al., 2007). Recent studies revealed that the ta-siRNA pathway is integrated into different processes of plant development, such as vegetative phase transition in Arabidopsis (Arabidopsis thaliana; Hunter et al., 2003; Peragine et al., 2004; Xie et al., 2005; Nakazawa et al., 2007) and shoot apical meristem (SAM) initiation in rice (Oryza sativa; Satoh et al., 1999; Itoh et al., 2000; Nagasaki et al., 2007). Parallel studies of this pathway in simple-leafed species also showed that the ta-siRNA pathway plays critical roles in patterning of leaves and floral organs.In flowering plants, leaves and flowers are produced on the periphery of the apical meristem. These lateral organs are structurally asymmetric with regard to the apical meristem. The adaxial side is adjacent to the meristem, while the abaxial side is away from the meristem. The ta-siRNA pathway was found to play a conserved role in specifying the adaxial identity of lateral organs in both monocots and dicots, but defects in the ta-siRNA pathway caused more severe phenotypes in monocots than in dicot Arabidopsis. In Arabidopsis, no clear leaf polarity defects were detected in the ta-siRNA-defective mutants. However, blocking the ta-siRNA pathway in asymmetric1 (as1) or as2 background, which are regulators of leaf adaxial identity (Lin et al., 2003; Xu et al., 2003), results in enhanced adaxial-abaxial leaf defects (Li et al., 2005; Xu et al., 2006; Garcia et al., 2006). In addition, the as2rdr6 double mutants also display aberrant flowers with sepals failing to enwrap the inner whorl organs and some sepals and petals becoming needle-like structures (Li et al., 2005). In maize (Zea mays), mutations in LEAFBLADELESS1 (LBL1), which encodes the Arabidopsis SGS3 ortholog, give rise to abnormal leaves with partial or complete loss of adaxial cell identity (Timmermans et al., 1998; Nogueira et al., 2007). In severe lbl1 mutants, leaf-like lateral organs of inflorescences and flowers develop as symmetric, thread-like organs, and the immature ear is exposed and arrested in development (Timmermans et al., 1998). In rice, the osdcl4-1 mutants display an abaxialized epidermis in coleoptiles and in the first leaf, and knockdown of OsDCL4 can lead to the awn-like lemma with a radial abaxialized identity and the stamens and carpel not enwrapped by the lemma and pelea (Liu et al., 2007). Transgenic rice plants with ectopic expression of SHOOTLESS4 (SHL4), the homolog of Arabidopsis AGO7, exhibit partially adaxialized leaves (Nagasaki et al., 2007; Shi et al., 2007).In addition to the ta-siRNA pathway, other components have also been shown to be involved in the adaxial-abaxial patterning of lateral organs. The Antirrhinum majus PHANTASTICA (PHAN) gene (Waites et al., 1998; Byrne et al., 2000; Xu et al., 2003; Qi et al., 2004), which is the ortholog of Arabidopsis AS1, and CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) gene family members (McConnell et al., 2001; Emery et al., 2003) contribute to adaxial pattern formation of lateral organs, whereas members of YABBY (YAB; Sawa et al., 1999; Siegfried et al., 1999) and KANADI (Eshed et al., 2001; Kerstetter et al., 2001) gene families, AUXIN RESPONSE FACTOR3 (ARF3) and ARF4 (Pekker et al., 2005), and the miRNAs miR165/166 (Emery et al., 2003; Eshed et al., 2004; Mallory et al., 2004) are required for specifying abaxial identity. How the activities of these adaxial and abaxial determinants are coordinated has been extensively studied. It was found that ARF3 and ARF4 are regulated by the TAS3 ta-siRNA, and this regulation is conserved in both monocots and dicots (Allen et al., 2005; Williams et al., 2005). Recent studies in Arabidopsis suggest that ta-siRNAs act in a non-cell-autonomous manner to spatially restrict ARF activity (Chitwood et al., 2009; Schwab et al., 2009).In contrast to simple leaves with their single lamina, compound leaves are composed of one petiole and several leaflets. It is found that genes required for the adaxial-abaxial patterning of lateral organs in simple-leafed species also play critical roles in compound-leafed species, but these genes play multiple roles in compound leaf development. In tomato (Solanum lycopersicum), down-regulation of PHAN ortholog disturbs the leaf polarity as well as leaflet formation (Kim et al., 2003). Extensive studies of the PHAN expression in diverse compound-leafed species suggest that the function of PHAN in maintaining leaf adaxial identity is associated with leaflet formation in compound leaves and reduced adaxial identity of leaf primordia by down-regulation of PHAN could change pinnate compound leaves into palmate leaves (Kim et al., 2003). In pea (Pisum sativum), the role of PHAN in compound leaf development has also been elucidated by characterization of the phan mutant crispa (cri; Tattersall et al., 2005). However, unlike antisense PHAN transgenic tomato leaves, the cri mutant has the individual leaflet abaxialized, rather than the whole leaf. The number of lateral organs on the cri mutant compound leaves, including leaflets, is not altered, and the leaves remain pinnate. Apart from leaf development, the cri mutation also affects flower development. Although the floral organ identity and organ number are not altered, the laminar floral organ display abaxialized identity (Tattersall et al., 2005).The ta-siRNA pathway plays a critical role in simple-leafed species, but its role in compound-leafed species is not understood. Here, we address this question by analyzing loss-of-function reduced leaflet (rel1) and rel3 mutants in the compound-leafed species Lotus japonicus. Phenotypic characterization shows compound leaves of rel mutants exhibit a conspicuous disturbance in leaflet polarity as well as reduction in leaflet number. Besides the abnormal compound leaves, flower development is also severely affected in rel mutants, showing radial symmetric petals. REL1 and REL3 were identified by map-based cloning and were shown to be homologs of Arabidopsis SGS3 and AGO7, respectively. REL1 and REL3 act in the same genetic pathway and are both required for the biogenesis of TAS3 ta-siRNA. Further investigation reveals that the homolog of the Arabidopsis ARF3 is duplicated in the L. japonicus genome and that the duplicate ARF3 homologs and the ARF4 homolog are all negatively regulated by the ta-siRNA pathway. Furthermore, we found that the expression of LjYAB1, a homolog of Arabidopsis YAB1, was decreased in rel mutants, which may be associated with the reduced lamina.Taken together, our data reveal that the ta-siRNA pathway is integrated into the regulatory networks in the control of lateral organ development in L. japonicus and further emphasize the importance of the ta-siRNA pathway in compound leaf development. Moreover, our results also indicate many parallels between L. japonicus and monocots for the ta-siRNA pathway in the regulation of lateral organs. 相似文献
969.
微生物燃料电池(Microbial fuel cell,MFC)作为一种生物电化学装置,在可再生能源生产和废水处理方面的巨大潜力已引起广泛关注。然而MFC面临输出功率低、欧姆内阻高以及启动时间长等问题,极大限制了其在实际工程中的应用。MFC中阳极是微生物附着的载体,对电子的产生及传递起着关键作用,开发优质的生物电极已发展成为改善MFC性能的有效途径。共轭聚合物具有成本低、电导率高、化学稳定性及生物相容性好等优点,利用共轭聚合物修饰生物电极结构,可以实现大比表面积、缩短电荷转移路径,从而实现高效生物电化学性能。同时,纳米级共轭聚合物包覆细菌,可以使细菌产生的电子有效地传递到电极。文中综述了最近报道的共轭聚合物在MFC中的应用,重点介绍了共轭聚合物修饰的MFC阳极,系统分析了共轭聚合物的优点及局限性,以及这些高效复合生物电极如何解决MFC应用中存在的低输出功率、高欧姆内阻及长启动时间等问题。 相似文献
970.