首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1472篇
  免费   148篇
  国内免费   167篇
  1787篇
  2024年   2篇
  2023年   29篇
  2022年   53篇
  2021年   77篇
  2020年   62篇
  2019年   78篇
  2018年   77篇
  2017年   67篇
  2016年   92篇
  2015年   116篇
  2014年   119篇
  2013年   127篇
  2012年   132篇
  2011年   119篇
  2010年   79篇
  2009年   66篇
  2008年   77篇
  2007年   60篇
  2006年   63篇
  2005年   33篇
  2004年   38篇
  2003年   30篇
  2002年   32篇
  2001年   19篇
  2000年   16篇
  1999年   27篇
  1998年   6篇
  1997年   4篇
  1995年   4篇
  1994年   8篇
  1993年   7篇
  1992年   13篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   7篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
排序方式: 共有1787条查询结果,搜索用时 15 毫秒
71.
72.
Litter inputs are expected to have a strong impact on soil N2O efflux. This study aimed to assess the effects of the litter decomposition process and nutrient efflux from litter to soil on soil N2O efflux in a tropical rainforest. A paired study with a control (L) treatment and a litter-removed (NL) treatment was followed for 2 years, continuously monitoring the effects of these treatments on soil N2O efflux, fresh litter input, decomposed litter carbon (LCI) and nitrogen (LNI), soil nitrate (NO3 ?–N), ammonium (NH4 +–N), dissolved organic carbon (DOC), and dissolved nitrogen (DN). Soil N2O flux was 0.48 and 0.32 kg N2O–N ha?1 year?1 for the L and NL treatments, respectively. Removing the litter caused a decrease in the annual soil N2O emission by 33%. The flux values from the litter layer were higher in the rainy season as compared to the dry season (2.10 ± 0.28 vs. 1.44 ± 0.35 μg N m?2 h?1). The N2O fluxes were significantly correlated with the soil NO3 ?–N contents (P < 0.05), indicating that the N2O emission was derived mainly from denitrification as well as other NO3 ? reduction processes. Suitable soil temperature and moisture sustained by rainfall were jointly attributed to the higher soil N2O fluxes of both treatments in the rainy season. The N2O fluxes from the L were mainly regulated by LCI, whereas those from the NL were dominated jointly by soil NO3 ? content and temperature. The effects of LCI and LNI on the soil N2O fluxes were the greatest in the 2 months after litter decomposition. Our results show that litter may affect not only the variability in the quantity of N2O emitted, but also the mechanisms that govern N2O production. However, further studies are still required to elucidate the impacting mechanisms of litter decomposition on N2O emission from tropical forests.  相似文献   
73.
Electrochemical reduction of CO2 provides an opportunity to reach a carbon‐neutral energy recycling regime, in which CO2 emissions from fuel use are collected and converted back to fuels. The reduction of CO2 to CO is the first step toward the synthesis of more complex carbon‐based fuels and chemicals. Therefore, understanding this step is crucial for the development of high‐performance electrocatalyst for CO2 conversion to higher order products such as hydrocarbons. Here, atomic iron dispersed on nitrogen‐doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO2 reduction to CO. Fe/NG has a low reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen‐confined atomic Fe moieties on the nitrogen‐doped graphene layer is confirmed by aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. The CO2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N4) embedded in nitrogen‐doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.  相似文献   
74.
Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.  相似文献   
75.

Objectives

SATB2 has been shown to be markedly reduced in colorectal cancer (CRC) tissues relative to paired normal controls; however, the mechanism behind remains not well understood. To investigate why SATB2 was down‐regulated in CRC, we attempted to analyse it from the angle of miRNA‐mRNA modulation.

Materials and methods

SATB2 expression was detected in CRC tissues using immunohistochemistry and verified using real‐time PCR on mRNA level, followed by analysis of clinicopathological significance of its expression. Metastatic variation of CRC cells was evaluated both in vivo and in vitro. To find out the potential miRNA that directly regulate the SATB2, luciferase reporter assay was performed following the bioinformatic prediction.

Results

SATB2 was confirmed to be closely linked with the metastasis and shorter overall survival of CRC in our own cases. Silencing of SATB2 was shown to be able to promote the metastatic ability of CRC cells in vivo, enhancing the epithelial‐mesenchymal transition (EMT). Mechanistically, miR‐34c‐5p was identified to be a novel miRNA that can directly modulate the SATB2. It turned out that the promoter of miR‐34c‐5p was methylated, which leads to the repression of miR‐34c‐5p in CRC. Treatment with 5‐Aza‐dC can reasonably and significantly restore the level of miR‐34c‐5p in CRC cells relative to control, thereby down‐regulating the SATB2.

Conclusions

Together, our study revealed that SATB2 targeted by methylated miR‐34c‐5p can suppress the metastasis, weakening the EMT in CRC.
  相似文献   
76.
77.
Aims Remote sensing technology has been proved useful in mapping grassland vegetation properties. Spectral features of vegetation cover can be recorded by optical sensors on board of different platforms. With increasing popularity of applying unmanned aerial vehicle (UAV) to mapping plant cover, the study aims to investigate the possible applications and potential issues related to mapping leaf area index (LAI) through integration of remote sensing imagery collected by multiple sensors.  相似文献   
78.
79.
9α-羟基雄甾-4-烯-3,17-二酮(9-OH-AD)是一种重要的甾体药物中间体,可以用来制备β-甾酮,地塞米松和其他类固醇化合物。3-甾酮9α-羟基化酶(KSH)是由两个亚基即末端氧化亚基(KshA)和铁氧还蛋白还原亚基(KshB)构成的。在本研究中,人工合成了来源于分枝杆菌Mycobacterium sp.Strain VKM Ac-1817D的kshA和kshB基因,通过优化表达载体促进了KshA和KshB在E.coli BL21(DE3)中的可溶性表达,并探究了催化体系中KSH还原亚基和氧化亚基的最适添加比例。此外,KSH转化雄甾-4-烯-3,17-二酮(AD)为9-OH-AD的过程中需要辅酶NADH。本研究构建了羟基化反应与利用葡萄糖脱氢酶(GDH)的NADH辅酶再生反应的偶联体系。为了进一步提高转化效率,本研究进行了转化条件的优化,并采取了分批补料的策略,最终9-OH-AD产量为4.78 g/L,转化率为96.7%。此种酶介导的转化生产9-OH-AD的方法为甾体药物生产提供了一种环境友好和经济实用型的新策略。  相似文献   
80.
人二氢乳清酸脱氢酶(human dihydroorotate dehydrogenase, hDHODH)是催化嘧啶从头合成途径的一个关键酶。近年来,多种研究表明,抑制该酶可缓解类风湿性关节炎的症状。但该酶的抑制剂甚少,寻找该酶的高效抑制剂具有重要意义。本研究利用PCR技术扩增hDHODH基因,构建重组质粒pET-19b-hDHODH,并在大肠杆菌(Escherichia coli, E.coli ) BL21(DE3)中表达,获得可溶性蛋白质。用Ni2+-NTA亲和层析柱对蛋白质进行纯化,获得较高(90%)纯度的hDHODH蛋白,将蛋白质与抑制剂3-(5-乙硫基)-1H-1, 2, 4-三氮唑-3-)苯甲酸和底物DHO混合孵育。用Hampton试剂盒初筛晶体并用棋盘法进行优化,获得晶形完美、衍射能力很强的hDHODH蛋白复合物单晶。用X射线衍射晶体,用CCP4、Coot软件解析结构,获得hDHODH蛋白复合物晶体结构。从解析的结构中可以看出,抑制剂与蛋白质的吻合度非常高,且抑制剂通过亲水的羧基端与蛋白质356位和147位的酪氨酸形成氢键网络。抑制剂的5元环与蛋白质359位的亮氨酸和360位的苏氨酸相互作用,使抑制剂与蛋白质牢固结合。该复合物晶体结构的顺利解析,将为开发新型特异性抗类风湿性关节炎药物提供重要基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号