首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1466篇
  免费   148篇
  国内免费   167篇
  2024年   2篇
  2023年   27篇
  2022年   49篇
  2021年   77篇
  2020年   62篇
  2019年   78篇
  2018年   77篇
  2017年   67篇
  2016年   92篇
  2015年   116篇
  2014年   119篇
  2013年   127篇
  2012年   132篇
  2011年   119篇
  2010年   79篇
  2009年   66篇
  2008年   77篇
  2007年   60篇
  2006年   63篇
  2005年   33篇
  2004年   38篇
  2003年   30篇
  2002年   32篇
  2001年   19篇
  2000年   16篇
  1999年   27篇
  1998年   6篇
  1997年   4篇
  1995年   4篇
  1994年   8篇
  1993年   7篇
  1992年   13篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   7篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
排序方式: 共有1781条查询结果,搜索用时 15 毫秒
51.
本文通过Aβ25-35诱导体外原代培养的SD乳大鼠海马神经元,建立Aβ毒性损伤细胞模型,结合AnnexinV-FITC/PI荧光双染法流式细胞术、MTT比色法、实时荧光定量PCR及Western blot方法检测川芎嗪(tetrameth-ylpyrazine,TMP)对原代培养的海马神经元细胞活性、早期凋亡率和Bax、Bcl-2基因表达的影响。结果显示川芎嗪高、中剂量可明显增强细胞活性,增加神经元细胞的存活率(P<0.01),可显著抑制海马神经元细胞早期凋亡(P<0.01),抑制凋亡蛋白Bax的表达(P<0.01),增强抗凋亡蛋白bcl-2的表达(P<0.01)。川芎嗪可通过调节Bax/Bcl-2平衡抵抗Aβ25-35诱导的海马神经元凋亡,降低Aβ的神经元毒性,对海马神经元损伤有明显的保护作用。  相似文献   
52.
Congenital hereditary cataract, which is mainly caused by the deposition of crystallins in light-scattering particles, is one of the leading causes of newborn blindness in human beings. Recently, an autosomal dominant congenital cataract-microcornea syndrome in a Chinese family has been associated with the S129R mutation in βB1-crystallin. To investigate the underlying molecular mechanism, we examined the effect of the mutation on βB1-crystallin structure and thermal stability. Biophysical experiments indicated that the mutation impaired the oligomerization of βB1-crystallin and shifted the dimer–monomer equilibrium to monomer. Molecular dynamic simulations revealed that the mutation altered the hydrogen-bonding network and hydrophobic interactions in the subunit interface of the dimeric protein, which resulted in the opening of the tightly associated interacting sites to allow the infiltration of the solvent molecules into the interface. Despite the disruption of βB1-crystallin assembly, the thermal stability of βB1-crystallin was increased by the mutation accompanied by the reduction of thermal aggregation at high temperatures. Further analysis indicated that the mutation significantly increased the sensitivity of βB1-crystallin to trypsin hydrolysis. The digested fragments of the mutant were prone to aggregate and unable to protect βA3-crystallin against aggregation. These results indicated that the thermal stability-beneficial mutation S129R in βB1-crystallin provided an excellent model for discovering molecular mechanisms apart from solubility and stability. Our results also highlighted that the increased sensitivity of mutated crystallins towards proteases might play a crucial role in the pathogenesis of congenital hereditary cataract and associated syndrome.  相似文献   
53.
The class III homeodomain-leucine zipper (HD-Zip III) gene family plays important roles in plant growth and development, including regulation of apical embryo patterning, embryonic shoot meristem formation, leaf polarity, vascular development, and meristem function, with a particularly crucial function in leaf development. Although HD-Zip III members are highly conserved in land plants, previous studies, such as genetic analyses based on multiple mutants in Arabidopsis and other plants, suggest that various HD-Zip III family genes have evolved with distinct functions and pleiotropic effects on plant growth and development. In this study, we analyzed a HD-Zip III member, OsHox33, and demonstrated that it plays an important role in age-dependent leaf senescence in rice. We constructed two specific RNAi vectors derived from the 5′-end region and 3′-UTR of OsHox33 to knockdown its expression. Transgenic plants harboring either RNAi construct displayed similar phenotypes of precocious leaf senescence symptoms, suggesting that knockdown of OsHox33 accelerates leaf senescence in rice. pOsHox33::GUS fusion expression and RT-PCR revealed that OsHox33 is highly expressed in young organs, especially in young meristems such as shoot apical meristems, intercalary meristems, and young callus. In addition, real-time PCR indicated that OsHox33 was more highly expressed in young leaves than in old leaves. To further investigate OsHox33 function, we analyzed chloroplast ultrastructure in different-aged leaves of RNAi plants, and found that OsHox33 knockdown accelerated chloroplast degradation, which is consistent with RNAi phenotypes. Finally, real-time PCR studies showed that OsHox33 can regulate the expression of GS1 and GS2, two senescence-associated genes. Taken together, the work presented here provides new insights into the function of HD-Zip III members in plants.  相似文献   
54.
A validated HPLC-DAD-ESI-MSn method for the analysis of non-anthocyanin flavonoids was applied to nine different tissues of twelve lotus genotypes of Nelumbo nucifera and N. lutea, together with an optimized anthocyanin extraction and separation protocol for lotus petals. A total of five anthocyanins and twenty non-anthocyanin flavonoids was identified and quantified. Flavonoid contents and compositions varied with cultivar and tissue and were used as a basis to divide tissues into three groups characterized by kaempferol and quercetin derivatives. Influences on flower petal coloration were investigated by principal components analyses. High contents of kaempferol glycosides were detected in the petals of N. nucifera while high quercetin glycoside concentrations occurred in N. lutea. Based on these results, biosynthetic pathways leading to specific compounds in lotus tissues are deduced through metabolomic analysis of different genotypes and tissues and correlations among flavonoid compounds.  相似文献   
55.
56.
In this study, we conducted an epigenome-wide association study of metabolic syndrome (MetS) among 846 participants of European descent in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). DNA was isolated from CD4+ T cells and methylation at ~470,000 cytosine-phosphate-guanine dinucleotide (CpG) pairs was assayed using the Illumina Infinium HumanMethylation450 BeadChip. We modeled the percentage methylation at individual CpGs as a function of MetS using linear mixed models. A Bonferroni-corrected P-value of 1.1 x 10−7 was considered significant. Methylation at two CpG sites in CPT1A on chromosome 11 was significantly associated with MetS (P for cg00574958 = 2.6x10-14 and P for cg17058475 = 1.2x10-9). Significant associations were replicated in both European and African ancestry participants of the Bogalusa Heart Study. Our findings suggest that methylation in CPT1A is a promising epigenetic marker for MetS risk which could become useful as a treatment target in the future.  相似文献   
57.
The design of acoustic signals and hearing sensitivity in socially communicating species would normally be expected to closely match in order to minimize signal degradation and attenuation during signal propagation. Nevertheless, other factors such as sensory biases as well as morphological and physiological constraints may affect strict correspondence between signal features and hearing sensitivity. Thus study of the relationships between sender and receiver characteristics in species utilizing acoustic communication can provide information about how acoustic communication systems evolve. The genus Gekko includes species emitting high-amplitude vocalizations for long-range communication (loud callers) as well as species producing only low-amplitude vocalizations when in close contact with conspecifics (quiet callers) which have rarely been investigated. In order to investigate relationships between auditory physiology and the frequency characteristics of acoustic signals in a quiet caller, Gekko subpalmatus we measured the subjects’ vocal signal characteristics as well as auditory brainstem responses (ABRs) to assess auditory sensitivity. The results show that G. subpalmatus males emit low amplitude calls when encountering females, ranging in dominant frequency from 2.47 to 4.17 kHz with an average at 3.35 kHz. The auditory range with highest sensitivity closely matches the dominant frequency of the vocalizations. This correspondence is consistent with the notion that quiet and loud calling species are under similar selection pressures for matching auditory sensitivity with spectral characteristics of vocalizations.  相似文献   
58.
Human umbilical vein endothelial cells (HUVECS) are used as an irreplaceable tool for the study of vascular diseases. However, the technicians who isolate HUVECs are largely exposed to potential infectious threats. Here we report the development of a specialized instrument to protect researchers from known or unknown infectious agents when they operate on human umbilical cords. This instrument can be assembled by common laboratory supplies and adapted to accommodate umbilical cords of different lengths. When the cord is enclosed within the instrument, the risk of sample contamination and operator infection is greatly reduced. Using our instrument, endothelial cells were successfully isolated from human umbilical veins without contamination. The cells were verified by their cobblestone-like morphology and by immunofluorescence staining (Factor VIII and CD31 positivity and α-SMA negativity). Our instrument simplifies and optimizes the cell extraction process, and most importantly elevates the biosafety to a higher level during the isolation of human umbilical vein endothelial cells.  相似文献   
59.
Elymus cylindricus (2= 6= 42) and E. breviaristatus (2= 6= 42) are distributed in grasslands and deserts of northern and north‐western China. Their genomic constitution and taxonomic status are unclear. Elymus cylindricus was crossed with E. wawawaiensis J.R.Carlson & Barkworth ( StH ), Roegneria grandis Keng ( StY ) and Campeiostachys dahurica (Turcz. ex Griseb.) B.R.Baum, J.L. Y ang & C. Y en var. dahurica ( StYH ). Meiotic pairing in the hybrids E. cylindricus × E. wawawaiensis ( StH ), E. cylindricus × R. grandis ( StY ) and E. cylindricus × C. dahurica var. dahurica ( StYH ) showed on average 10.00, 11.30 and 20.92 bivalents per cell, respectively. Elymus breviaristatus was crossed with C. dahurica var. dahurica ( StYH ) and E. cylindricus. Chromosome pairing in the hybrids of E. breviaristatus × C. dahurica var. dahurica and E. breviaristatus × E. cylindricus showed on average 19.60 and 19.27 bivalents, respectively. Genomic in situ hybridization (GI SH ) revealed the presence of St , Y and H genomes in E. cylindricus and E. breviaristatus. An intergenomic rearrangement was observed in E. cylindricus using GI SH . Meiotic pairing data and GI SH indicated that both E. cylindricus and E. breviaristatus are allohexaploids containing the StYH genomes. Elymus cylindricus and E. breviaristatus should be treated as Campeiostachys dahurica var. cylindrica and Campeiostachys breviaristata, respectively.  相似文献   
60.
Sugars act as vital signaling molecules that regulate plant growth, development and stress responses. However, the effects of sugars on stomatal movement have been unclear. In our study, we explored the effects of monosaccharides such as glucose and mannose on stomatal aperture. Here, we demonstrate that glucose and mannose trigger stomatal closure in a dose‐ and time‐dependent manner in epidermal peels of broad bean (Vicia faba). Pharmacological studies revealed that glucose‐ and mannose‐induced stomatal closure was almost completely inhibited by two reactive oxygen species (ROS) scavengers, catalase (CAT) and reduced glutathione (GSH), was significantly abolished by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), whereas they were hardly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM). Furthermore, glucose‐ and mannose‐induced stomatal closure was strongly inhibited by a Ca2+ channel blocker, LaCl3, a Ca2+ chelator, ethyleneglycol‐bis(beta‐aminoethylether)‐N,N'‐tetraacetic acid (EGTA) and two water channel blockers, HgCl2 and dimethyl sulfoxide (DMSO); whereas the inhibitory effects of the water channel blockers were essentially abolished by the reversing agent β‐mercaptoethanol (β‐ME). These results suggest that ROS production mainly via NADPH oxidases, Ca2+ and water channels are involved in glucose‐ and mannose‐induced stomatal closure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号