首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4523篇
  免费   476篇
  国内免费   438篇
  2024年   10篇
  2023年   53篇
  2022年   124篇
  2021年   192篇
  2020年   155篇
  2019年   228篇
  2018年   184篇
  2017年   170篇
  2016年   190篇
  2015年   278篇
  2014年   293篇
  2013年   332篇
  2012年   362篇
  2011年   327篇
  2010年   231篇
  2009年   201篇
  2008年   224篇
  2007年   207篇
  2006年   172篇
  2005年   155篇
  2004年   172篇
  2003年   196篇
  2002年   226篇
  2001年   136篇
  2000年   116篇
  1999年   91篇
  1998年   81篇
  1997年   57篇
  1996年   36篇
  1995年   32篇
  1994年   22篇
  1993年   16篇
  1992年   14篇
  1991年   26篇
  1990年   20篇
  1989年   23篇
  1988年   9篇
  1987年   11篇
  1986年   12篇
  1985年   8篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1979年   5篇
  1973年   4篇
  1966年   2篇
  1959年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有5437条查询结果,搜索用时 31 毫秒
241.
To understand the molecular mechanism of ovule development, a MADS box gene,HoMADS 1, has been isolated from the ovule tissues of Hyacinthus. Sequence comparison showed that HoMADS 1 is highly homologous to both class C and D genes. Furthermore, phylogenetic analysis suggests that HoMADS 1 is most likely a class D MADS box gene. RNA hybridization revealed that HoMADS 1 was exclusively expressed in the ovules. Over-expressing HoMADS 1 in transgenic Arabidopsis plants produced ectopic carpelloid structures, including ovules, indicating that HoMADS 1 is involved in the determination of carpel and ovule identities. Interestingly, during in vitro flowering, no HoMADS 1 mRNA was detected in the floral tissues at high level hormones in the media. However, HoMADS 1 mRNA accumulated in the floral tissues when the regenerated flowers were transferred to the media containing low level hormones which could induce in vitro ovule formation. Our data suggest that the induction of HoMADS 1 by plant hormones may play important roles during ovule initiation and development in the regenerated flower. Whether HoMADS 1 expression is also regulated by cytokinin and auxin during ovule development in planta remains to be investigated.  相似文献   
242.
Previously we have shown that human red blood cells (RBCs) undergo a sudden change from blocking to passing through a 1.3±0.2-µm micropipette when applying an aspiration pressure of 2.3 kPa at a critical transition temperature (Tc=36.4±0.3 °C). Low-shear viscosity measurements suggested that changes in the molecular properties of hemoglobin might be responsible for this effect. To evaluate structural changes in hemoglobin at the critical temperature, we have used circular dichroism (CD) spectroscopy. The thermal denaturation curves of human hemoglobin A (HbA) and hemoglobin S (HbS) upon heating between 25 and 60 °C were non-linear and showed accelerated denaturation between 35 and 39 °C with a midpoint at 37.2±0.6 °C. The transition was reversible below 39 °C and independent of solution pH (pH 6.8–7.8). It was also independent of the oxygenation state of hemoglobin, since a sample that was extensively deoxygenated with N2 showed a similar transition by CD. These findings suggest that a structural change in hemoglobin may enable the cellular passage phenomenon as well as the temperature-dependent decrease in viscosity of RBC solutions.  相似文献   
243.
Zerumbone ring-opening derivative, 4 (10E/10Z=3/2), inhibited autophosphorylation of the essential histidine-kinase YycG existing in Bacillus subtilis constituting a two-component system (TCS). Generation of 4E-form could be regulated chemically using the difference from the ring-opening reactivity of the precursor forming of 4 and pure 4E was isolated. The stereoisomer, 4E, showed main inhibition activity of autophosphorylation of YycG (IC(50)=63.5 microM).  相似文献   
244.
Anovulatory infertility affects a large proportion of reproductive-aged women. Major improvements in successful clinical treatment of this prevalent disorder in women's health have been made possible because of biomedical research employing nonhuman primates. Experiments on female rhesus monkeys were the first to demonstrate that the key hypothalamic neurotransmitter, gonadotropin-releasing hormone, involved in stimulating pituitary gonadotropin synthesis, storage, and release was bioactive only when released in approximately hourly bursts. This breakthrough in understanding gonadotropin regulation enabled identification of hypogonadotropic, apparently normogonadotropic, and hypergonadotropic forms of anovulatory infertility, and development of appropriate stimulatory or inhibitory gonadotropin therapies. Treatments to overcome anovulatory infertility represent one of the major advances in clinical reproductive endocrinology during the last 25 yr. The future promise of nonhuman primate models for human ovulatory dysfunction, however, may be based on an increased understanding of molecular and physiological mechanisms responsible for fetal programming of adult metabolic and reproductive defects and for obesity-related, hyperinsulinemic impairment of oocyte development.  相似文献   
245.
246.
Our aim was to determine whether cytokine mRNA expression is induced by experimental manipulation including artificial perfusate or ischemia-reperfusion (I/R) in an isolated, perfused rat lung model. Constant pulmonary flow [Krebs-Henseleit solution supplemented with low-endotoxin (LE) or standard (ST) bovine serum albumin 4%, 0.04 ml/g body wt] and ventilation were maintained throughout. Right and left pulmonary arteries were isolated, and the left pulmonary artery was occluded for 60 min and then reperfused for 30 min. Analysis of tumor necrosis factor-alpha, IL-1 beta, IL-6, IL-10, and IFN-gamma mRNA expression by RT-PCR and evaluation of vascular permeability by bronchoalveolar lavage (BAL) fluid albumin content were conducted separately in right and left lung. Both LE and ST groups (each 12 rats) showed increases in vascular permeability by I/R (BAL fluid albumin content: 5.53 +/- 1.55 vs. 15.63 +/- 8.87 and 4.76 +/- 2.71 vs. 16.72 +/- 4.85 mg.ml BAL fluid-1.g lung dry wt-1, mean +/- SD; right vs. left lung in LE and ST groups, P < 0.05 between right and left). Cytokine mRNA expression was significantly higher in the I/R lung than in the control lung in the LE group, whereas it was higher in the control lung in the ST group (P < 0.05). mRNAs of not only proinflammatory but also anti-inflammatory cytokines were expressed in I/R lung, which are expected to aggravate I/R injury. The reversed pattern of cytokine mRNA expression in the ST group was possibly due to the longer perfusion of control lung with perfusate containing endotoxin, which caused no lung damage without I/R.  相似文献   
247.
Normally, signaling mechanisms that activate large-conductance, calcium- and voltage-activated potassium (BK(Ca)) channels in pulmonary vascular smooth muscle cause pulmonary vasodilatation. BK(Ca)-channel modulation is important in the regulation of pulmonary arterial pressure, and inhibition (decrease in the opening probability) of the BK(Ca) channel has been implicated in the development of pulmonary vasoconstriction. Protein kinase C (PKC) causes pulmonary vasoconstriction, but little is known about the effect of PKC on BK(Ca)-channel activity in pulmonary vascular smooth muscle. Accordingly, studies were done to determine the effect of PKC on BK(Ca)-channel activity using patch-clamp studies in pulmonary arterial smooth muscle cells (PASMCs) of the Sprague-Dawley rat. The PKC activators phorbol myristate acetate (PMA) and thymeleatoxin opened BK(Ca) channels in single Sprague-Dawley rat PASMC. The activator response to both PMA and thymeleatoxin on BK(Ca)-channel activity was blocked by G?-6983, which selectively blocks PKC-alpha, -delta, -gamma, and -zeta, and by rottlerin, which selectively inhibits PKC-delta. In addition, the specific cyclic GMP-dependent protein kinase antagonist KT-5823 blocked the responses to PMA and thymelatoxin, whereas the specific cyclic AMP-dependent protein kinase blocker KT-5720 had no effect. In isolated pulmonary arterial vessels, both PMA and forskolin caused vasodilatation, which was inhibited by KT-5823, G?-6983, or the BK(Ca)-channel blocker tetraethylammonium. The results of this study indicate that activation of specific PKC isozymes increases BK(Ca)-channel activity in Sprague-Dawley rat PASMC via cyclic GMP-dependent protein kinase, which suggests a unique signaling mechanism for vasodilatation.  相似文献   
248.
Expression of ricin A chain and ricin A chain-KDEL in Escherichia coli   总被引:2,自引:0,他引:2  
Ricin and its A chains can be used to conjugate with monoclonal antibodies to prepare immunotoxins. Ricin A chain (RTA) and its modification RTA-KDEL (ER-retrieval signal) were expressed with the pKK223.3 system in Escherichia coli under control of a tac promoter. The recombinant proteins can be purified by one-step affinity chromatography on a column of Blue-Sepharose 6B. The toxicities of RTA and its mutant RTA-KDEL were evaluated by the MTT assay in HeLa, MCF, and ECV-304 cells following fluid-phase endocytosis. RTA-KDEL was somewhat more cytotoxic than RTA itself in the different cell lines. The results suggest that rRTA-KDEL may be useful for the synthesis of more potent immunotoxins.  相似文献   
249.
Inducing cellular dedifferentiation has been proposed as a potential method for enhancing endogenous regeneration in mammals. Here we demonstrate that phenotypic and functional neurons derived from adult rat bone marrow stromal stem cells (MSCs) can be induced to undergo dedifferentiation, then proliferation and redifferentiation. In addition to morphological changes and expression of neuronal markers, neuron-specific enolase and neurofilament H, functional differentiation was monitored by intracellular Ca2+ mobilization in response to a ubiquitous neurotransmitter, 5-hydroxytryptamine (5-HT) at different stages. The neurons derived from rMSCs were found to have increased 5-HT response. This 5-HT sensitivity could be reversed to basal level similar to that found in rMSCs when neurons, up to 3 days after neuronal induction, were induced to undergo dedifferentiation. Increase in 5-HT-induced Ca2+ mobilization was again observed when rMSCs derived from dedifferentiated neurons were induced to redifferentiate into neurons again. Variation in 5-HT1A receptor immunoreactivity was observed in stem cells, differentiated neurons, dedifferentiated neurons and redifferentiation neurons, consistent with their respective 5-HT sensitivity. These results suggest that adult bone marrow-derived 5-HT sensitive neurons are capable of dedifferentiation, then proliferation and redifferentiation, indicating their plasticity and potential use in treatment of neural degenerative diseases.  相似文献   
250.
The marginal division (MrD) is a spindled-neurons consisted zone at the caudal border of the neostriatum in the mammalian brain and has been verified as contributing to associative learning and declarative memory in the rat and human with behavior and functional magnetic resonance imaging methods. It was proved to have functional connections with the limbic system. Whether the MrD has influence on the hippocampal long-term potentiation (LTP) was investigated in this study. LTP was induced from the dentate gyrus (DG) in the hippocampus by high-frequency stimulation (HFS) to the perforant path (PP). The amplitude of the population spike (PS) and the slope of the excitatory postsynaptic potential (EPSP) increased significantly to form LTP in the DG of the hippocampus after HFS of PP in normal and saline-injected control groups of rats. Lesions introduced in the MrD reduced significantly both the amplitude of PS and the slope of the EPSP following HFS of the PP. The results indicated that lesions in the MrD could attenuate LTP formation in the hippocampus. Our data suggest that the MrD might very possibly have excitatory functional influence on the hippocampus and therefore might influence the function of the hippocampus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号