首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113337篇
  免费   1927篇
  国内免费   2410篇
  2024年   43篇
  2023年   222篇
  2022年   612篇
  2021年   1172篇
  2020年   782篇
  2019年   953篇
  2018年   12525篇
  2017年   11153篇
  2016年   8288篇
  2015年   1884篇
  2014年   1863篇
  2013年   2026篇
  2012年   6049篇
  2011年   14387篇
  2010年   12961篇
  2009年   9111篇
  2008年   10833篇
  2007年   12279篇
  2006年   1119篇
  2005年   1241篇
  2004年   1516篇
  2003年   1551篇
  2002年   1216篇
  2001年   575篇
  2000年   484篇
  1999年   349篇
  1998年   196篇
  1997年   191篇
  1996年   190篇
  1995年   175篇
  1994年   164篇
  1993年   145篇
  1992年   177篇
  1991年   151篇
  1990年   117篇
  1989年   84篇
  1988年   71篇
  1987年   59篇
  1986年   35篇
  1985年   36篇
  1984年   24篇
  1983年   32篇
  1982年   18篇
  1975年   7篇
  1972年   246篇
  1971年   274篇
  1965年   13篇
  1962年   24篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
961.
Breast cancer is a common malignancy that is highly lethal with poor survival rates and immature therapeutics that urgently needs more effective and efficient therapies. MicroRNAs are intrinsically involved in different cancer remedies, but their mechanism in breast cancer has not been elucidated for prospective treatment. The function and mechanism of microRNA-188-5p (miR-188) have not been thoroughly investigated in breast cancer. In our study, we found that the expression of miR-188 in breast cancer tissues was obviously reduced. Our findings also revealed the abnormal overexpression of miR-188 in 4T1 and MCF-7 cells significantly suppressed cell proliferation and migration and also enhanced apoptosis. miR-188 induced cell cycle arrest in the G1 phase. To illuminate the molecular mechanism of miR-188, Rap2c was screened as a single target gene by bioinformatics database analysis and was further confirmed by dual-luciferase assay. Moreover, Rap2c was found to be a vital molecular switch for the mitogen-activated protein kinase signaling pathway in tumor progression by decreasing apoptosis and promoting proliferation and migration. In conclusion, our results revealed that miR-188 is a cancer progression suppressor and a promising future target for breast cancer therapy.  相似文献   
962.
963.
964.
p120-catenin (p120) serves as a stabilizer of the calcium-dependent cadherin-catenin complex and loss of p120 expression has been observed in several types of human cancers. The p120-dependent E-cadherin-β-catenin complex has been shown to mediate calcium-induced keratinocyte differentiation via inducing activation of plasma membrane phospholipase C-γ1 (PLC-γ1). On the other hand, PLC-γ1 has been shown to interact with phosphatidylinositol 3-kinase enhancer in the nucleus and plays a critical role in epidermal growth factor-induced proliferation of oral squamous cell carcinoma (OSCC) cells. To determine whether p120 suppresses OSCC proliferation and tumor growth via inhibiting PLC-γ1, we examined effects of p120 knockdown or p120 and PLC-γ1 double knockdown on proliferation of cultured OSCC cells and tumor growth in xenograft OSCC in mice. The results showed that knockdown of p120 reduced levels of PLC-γ1 in the plasma membrane and increased levels of PLC-γ1 and its signaling in the nucleus in OSCC cells and OSCC cell proliferation as well as xenograft OSCC tumor growth. However, double knockdown of p120 and PLC-γ1 or knockdown of PLC-γ1 alone did not have any effect. Immunohistochemical analysis of OSCC tissue from patients showed a lower expression level of p120 and a higher expression level of PLC-γ1 compared with that of adjacent noncancerous tissue. These data indicate that p120 suppresses OSCC cell proliferation and tumor growth by inhibiting signaling mediated by nuclear PLC-γ1.  相似文献   
965.
Many studies have investigated the associations between methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms and risk of fractures, but the impact of MTHFR polymorphisms on fractures risk is unclear owing to the obvious inconsistence among those studies. This study aims to quantify the strength of association between MTHFR C677T and A1298C polymorphisms and risk of fractures. We searched the PubMed, Embase and Wanfang databases for articles relating the association between MTHFR C677T and A1298C polymorphisms and risk of fractures in humans. We estimated summary odds ratios (ORs) with their confidence intervals (CIs) to assess the associations. Meta-analyses suggested MTHFR C677T polymorphism was associated with increased risk of any site fractures (for T vs. C, OR = 1.17, 95 % CI 1.03–1.32; for TT vs. CC, OR = 1. 31, 95 % CI 1.11–1.54; for TT vs. CT, OR = 1.22, 95 % CI 1.04–1.43; for TT vs. CT/CC, OR = 1.31, 95 % CI 1.13–1.51). Besides, MTHFR A1298C polymorphism was also associated with increased risk of any site fractures. Subgroup meta-analyses suggested MTHFR C677T polymorphism was associated with increased risk of vertebral fractures under three genetic contrast modes (for TT vs. CC, OR = 1.43, 95 % CI 1.05–1.95; for TT vs. CT, OR = 1.36, 95 % CI 1.01–1.85; for TT vs. CT/CC, OR = 1.50, 95 % CI 1.17–1.91), but there was no association between MTHFR C677T polymorphism and risk of hip fractures and non-vertebral fractures (all P values were more than 0.05). Thus, individuals with homozygote genotype TT of MTHFR C677T have obviously increased risk of vertebral fractures compared those with heterozygote genotype CT or homozygote genotype CC. There is no association between MTHFR C677T polymorphism and risk of hip fractures and non-vertebral fractures.  相似文献   
966.
967.
The type II CRISPR/Cas system from Streptococcus pyogenes and its simplified derivative, the Cas9/single guide RNA (sgRNA) system, have emerged as potent new tools for targeted gene knockout in bacteria, yeast, fruit fly, zebrafish and human cells. Here, we describe adaptations of these systems leading to successful expression of the Cas9/sgRNA system in two dicot plant species, Arabidopsis and tobacco, and two monocot crop species, rice and sorghum. Agrobacterium tumefaciens was used for delivery of genes encoding Cas9, sgRNA and a non-fuctional, mutant green fluorescence protein (GFP) to Arabidopsis and tobacco. The mutant GFP gene contained target sites in its 5′ coding regions that were successfully cleaved by a CAS9/sgRNA complex that, along with error-prone DNA repair, resulted in creation of functional GFP genes. DNA sequencing confirmed Cas9/sgRNA-mediated mutagenesis at the target site. Rice protoplast cells transformed with Cas9/sgRNA constructs targeting the promoter region of the bacterial blight susceptibility genes, OsSWEET14 and OsSWEET11, were confirmed by DNA sequencing to contain mutated DNA sequences at the target sites. Successful demonstration of the Cas9/sgRNA system in model plant and crop species bodes well for its near-term use as a facile and powerful means of plant genetic engineering for scientific and agricultural applications.  相似文献   
968.
Ubiquitylation plays key roles in DNA damage signal transduction. The current model envisions that lysine63-linked ubiquitin chains, via the concerted action of E3 ubiquitin ligases RNF8-RNF168, are built at DNA double-strand breaks (DSBs) to effectively assemble DNA damage-repair factors for proper checkpoint control and DNA repair. We found that RNF168 is a short-lived protein that is stabilized by the deubiquitylating enzyme USP34 in response to DNA damage. In the absence of USP34, RNF168 is rapidly degraded, resulting in attenuated DSB-associated ubiquitylation, defective recruitment of BRCA1 and 53BP1 and compromised cell survival after ionizing radiation. We propose that USP34 promotes a feed-forward loop to enforce ubiquitin signaling at DSBs and highlight critical roles of ubiquitin dynamics in genome stability maintenance.  相似文献   
969.
Adenosine (AD) is a nucleic acid component that is critical for energy metabolism in the body. AD modulates numerous neural functions in the central nervous system, including the sleep-wake cycle. Previous studies have indicated that the A1 receptor (A1R) or A2A receptor (A2AR) may mediate the effects of AD on the sleep-wake cycle. The hypothalamic ventrolateral preoptic area (VLPO) initiates and maintains normal sleep. Histological studies have shown A1R are widely expressed in brain tissue, whereas A2AR expression is limited in the brain and undetectable in the VLPO. We hypothesize therefore, that AD modulates the sleep-wake cycle through A1R in the VLPO. In the present study, bilateral microinjection of AD or an AD transporter inhibitor (s-(4-nitrobenzyl)-6-thioinosine) into the VLPO of rats decreased non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. An A1R agonist (N6-cyclohexyladenosine) produced similar effects in the VLPO. Microinjection of an A1R antagonist (8-cyclopentyl-1,3-dimethylxanthine) into the VLPO enhanced NREM sleep and diminished AD-induced wakefulness. These data indicate that AD enhances wakefulness in the VLPO via A1R in rats.  相似文献   
970.
The proliferation of neonatal Schwann cells (SCs) in response to mitogenic agents has been well analyzed in vitro (mono-layer-culture method, 2D environment), but not in vivo (3D environment). To assess the mitogenic effect of platelet-derived growth factors-BB (PDGF-BB), Fibroblast Growth Factors-base (bFGF), and their combinations for SCs in collagen gel (three-dimensional, 3D environment), we have developed an integrated microfluidic device on which can reproducibly measure the proliferation from small number of cells (1–100). The rat SCs were cultured for 4 week at the different concentrations of growth factors generated by concentration gradient generator. In the collagen gel culture, almost all of the cells in colonies presented a round cell morphology and maintained their round morphology by the 4th week. The results showed that PDGF-BB and bFGF are all capable of moderately stimulating SCs growth and every group reached the peak in the growth curve at 3 weeks. Moreover, the proliferation test using the conventional method was performed simultaneously and revealed similar results. The biggest difference between 2D and 3D was that cells decrease more remarkable in 3D than that in 2D at 4 weeks. And at 2 and 3 weeks, the growth rate in the collagen gel with 7.14/2.86 and 8.57/1.43 ng/mL groups was higher than that in the mono-layer culture. Our results showed that PDGF-BB and bFGF are capable of moderately stimulating neonatal SCs growth, respectively and synergistically, and the microfluidic technique is highly controllable, contamination free, fully automatic, and inexpensive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号