首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19464篇
  免费   1772篇
  国内免费   3090篇
  2024年   55篇
  2023年   309篇
  2022年   717篇
  2021年   1165篇
  2020年   920篇
  2019年   1027篇
  2018年   896篇
  2017年   686篇
  2016年   936篇
  2015年   1452篇
  2014年   1612篇
  2013年   1705篇
  2012年   2114篇
  2011年   1870篇
  2010年   1166篇
  2009年   1074篇
  2008年   1193篇
  2007年   952篇
  2006年   842篇
  2005年   698篇
  2004年   566篇
  2003年   518篇
  2002年   377篇
  2001年   270篇
  2000年   217篇
  1999年   218篇
  1998年   107篇
  1997年   78篇
  1996年   81篇
  1995年   80篇
  1994年   53篇
  1993年   36篇
  1992年   55篇
  1991年   50篇
  1990年   41篇
  1989年   43篇
  1988年   14篇
  1987年   18篇
  1986年   13篇
  1985年   17篇
  1984年   9篇
  1983年   12篇
  1982年   12篇
  1979年   4篇
  1978年   6篇
  1975年   4篇
  1974年   4篇
  1972年   3篇
  1971年   3篇
  1970年   5篇
排序方式: 共有10000条查询结果,搜索用时 132 毫秒
121.
Diquat is a bipyridyl herbicide that has been widely used as a model chemical for in vivo studies of oxidative stress due to its generation of superoxide anions, and cytotoxic effects. There is little information regarding the toxic effects of diquat on the female reproductive system, particularly ovarian function. Thus, we investigated the reproductive toxic effects of diquat on female mice. Chronic exposure to diquat reduced ovary weights, induced ovarian oxidative stress, resulted in granulosa cell apoptosis, and disrupted oocyte developmental competence, as shown by reactive oxygen species (ROS) accumulation, decreased polar body extrusion rates and increased apoptosis-related genes expression. Additionally, after diquat treatment, the numbers of fetal mice and litter sizes were significantly reduced compared to those of control mice. Thus, our results indicated that chronic exposure to diquat induced reproductive toxicity in female mice by promoting the ROS production of gruanousa cells and ooctyes, impairing follicle development, inducing apoptosis, and reducing oocyte quality. In conclusion, our findings indicate that diquat can be used as a potent and efficient chemical for in vivo studies of female reproductive toxicity induced by oxidative stress. Moreover, the findings from this study will further enlarge imitative research investigating the effect of ovarian damage induced by oxidative stress on reproductive performance and possible mechanisms of action in large domestic animals.  相似文献   
122.
Both monoamine oxidase B (MAO-B) and iron accumulation are associated with neurologic diseases including Parkinson’s disease. However, the association of iron with MAO-B activity was poorly understood. Here we took advantage of highly sensitive and specific fluorescence probes to examine the change in MAO-B activity in human dopaminergic neuroblastoma (SH-SY5Y) cells upon iron exposure. Both ferric and ferrous ions could significantly enhance the activity of MAO-B, instead of MAO-A, in SH-SY5Y cells. In addition, iron-induced increase in MAO-B probe fluorescence could be prevented by pargyline and other newly developed MAO-B inhibitors, suggesting that it was MAO-B activity-dependent. These findings may suggest MAO-B is an important sensor in iron-stressed neuronal cells.  相似文献   
123.
Western flower thrip, Frankliniella occidentalis (Pergande), is among the most economically important agricultural pests globally, attacking a wide range of vegetable and horticultural crops. In addition to causing extensive crop damage, the species is notorious for vectoring destructive plant viruses, mainly belonging to the genera Orthotospovirus, Ilarvirus, Alphacarmovirus and Machlomovirus. Once infected by orthotospoviruses, thrips can remain virulent throughout their lifespan and continue transmitting viruses to host plants when and wherever they feed. These irruptive viral outbreaks in crops will permanently disrupt functional integrated pest management systems, and typically require a remedial treatment involving insecticides, contributing to further development of insecticide resistance. To mitigate against this continuing cycle, the most effective management is early and comprehensive surveillance of the pest species and recognition of plant viruses in the field. This review provides information on the pest status of F. occidentalis, discusses the current global status of the viruses vectored by this thrip species, examines the mechanisms involved in transmitting virus‐induced diseases by thrips, and reviews different management strategies, highlighting the potential management tactics developed for various cropping systems. The early surveillance and the utilization of potential methods for control of both F. occidentalis and viruses are proposed.  相似文献   
124.
Root growth relies on both cell division and cell elongation, which occur in the meristem and elongation zones, respectively. SCARECROW (SCR) and SHORT-ROOT (SHR) are GRAS family genes essential for root growth and radial patterning in the Arabidopsis root. Previous studies showed that SCR and SHR promote root growth by suppressing cytokinin response in the meristem, but there is evidence that SCR expressed beyond the meristem is also required for root growth. Here we report a previously unknown role for SCR in promoting cell elongation. Consistent with this, we found that the scr mutant accumulated a higher level of reactive oxygen species (ROS) in the elongation zone, which is probably due to decreased expression of peroxidase gene 3, which consumes hydrogen peroxide in a reaction leading to Casparian strip formation. When the oxidative stress response was blocked in the scr mutant by mutation in ABSCISIC ACID 2 (ABA2) or when the redox status was ameliorated by the upbeat 1 (upb1) mutant, the root became significantly longer, with longer cells and a larger and more mitotically active meristem. Remarkably, however, the stem cell and radial patterning defects in the double mutants still persisted. Since ROS and peroxidases are essential for endodermal differentiation, these results suggest that SCR plays a role in coordinating cell elongation, endodermal differentiation, redox homeostasis and oxidative stress response in the root. We also provide evidence that this role of SCR is independent of SHR, even though they function similarly in other aspects of root growth and development.  相似文献   
125.
126.
Xanthoangelol (XAG), a prenylated chalcone isolated from the Japanese herb Angelica keiskei Koidzumi, has been reported to exhibit antineoplastic properties. However, the specific anti‐tumor activity of XAG in human hepatocellular carcinoma (HCC), and the relevant mechanisms are not known. Herein, we evaluated the effect of XAG against HCC in vitro and in vivo. Although XAG treatment did not significantly reduce the viability of the Hep3B and Huh7 cell lines, it suppressed cell migration, invasion, and EMT. This anti‐metastatic effect of XAG was due to induction of autophagy, because treatment with the autophagy inhibitor 3‐methyadenine (3‐MA) or knockdown of the pro‐autophagy Beclin‐1 effectively abrogated the XAG‐induced suppression of metastasis. Mechanistically, XAG induced autophagy via activation of the AMPK/mTOR signaling pathway, and XAG treatment dramatically increased the expression of p‐AMPK while decreasing p‐mTOR expression. In addition, blocking AMPK/mTOR axis with compound C abrogated the autophagy‐mediated inhibition of metastasis. The murine model of HCC metastasis also showed that XAG effectively reduced the number of metastatic pulmonary nodules. Taken together, our results revealed that autophagy via the activation of AMPK/mTOR pathway is essential for the anti‐metastatic effect of XAG against HCC. These findings not only contribute to our understanding of the anti‐tumor activity of XAG but also provide a basis for its clinical application in HCC. Before this study, evidence of XAG on HCC was purely anecdotal; present study provides the first comprehensive assessments of XAG on HCC metastasis and investigates its underlying mechanism. Results suggest that XAG exerts anti‐metastatic properties against HCC through inducing autophagy which is mediated by the activation of AMPK/mTOR signaling pathway. This research extends our knowledge about the antineoplastic properties of XAG and suggests that induction autophagy may represent future treatment strategies for metastatic HCC.  相似文献   
127.
Hypertension is an independent risk factor for the progression of chronic renal failure, and oxidative stress plays a critical role in hypertensive renal damage. Forkbox O1(FoxO1) signaling protects cells against oxidative stress and may be a useful target for treating oxidative stress-induced hypertension. Tongxinluo is a traditional Chinese medicine with cardioprotective and renoprotective functions. Therefore, this study aimed to determine the effects of Tongxinluo in hypertensive renal damage in spontaneously hypertensive rats(SHRs)and elucidate the possible involvement of oxidative stress and FoxO1 signaling in its molecular mechanisms. SHRs treated with Tongxinluo for 12 weeks showed a reduction in systolic blood pressure. In addition to increasing creatinine clearance, Tongxinluo decreased urinary albumin excretion, oxidative stress injury markers including malondialdehyde and protein carbonyls, and expression of nicotinamide adenine dinucleotide phosphate oxidase subunits and its activity in SHR kidneys. While decreasing phosphorylation of FoxO1, Tongxinluo also inhibited the phosphorylation of extracellular signal-regulated kinase1/2 and p38 and enhanced manganese superoxide dismutase and catalase activities in SHR kidneys. Furthermore, histology revealed attenuation of glomerulosclerosis and renal podocyte injury, while Tongxinluo decreased the expression of α-smooth muscle actin, extracellular matrixprotein, transforming growth factor β1 and small mothers against decapentaplegic homolog 3,and improved tubulointerstitial fibrosis in SHR kidneys. Finally, Tongxinluo inhibited inflammatory cell infiltration as well as expression of tumor necrosis factor-α and interleukin-6. In conclusion, Tongxinluo protected SHRs against hypertension-induced renal injury by exerting antioxidant, antifibrotic, and anti-inflammatory activities. Moreover, the underlying mechanisms of these effects may involve inhibition of oxidative stress and functional activation of FoxO1 signaling.  相似文献   
128.
The origin of cultivated tree peonies, known as the ‘king of flowers'' in China for more than 1000 years, has attracted considerable interest, but remained unsolved. Here, we conducted phylogenetic analyses of explicitly sampled traditional cultivars of tree peonies and all wild species from the shrubby section Moutan of the genus Paeonia based on sequences of 14 fast-evolved chloroplast regions and 25 presumably single-copy nuclear markers identified from RNA-seq data. The phylogeny of the wild species inferred from the nuclear markers was fully resolved and largely congruent with morphology and classification. The incongruence between the nuclear and chloroplast trees suggested that there had been gene flow between the wild species. The comparison of nuclear and chloroplast phylogenies including cultivars showed that the cultivated tree peonies originated from homoploid hybridization among five wild species. Since the origin, thousands of cultivated varieties have spread worldwide, whereas four parental species are currently endangered or on the verge of extinction. The documentation of extensive homoploid hybridization involved in tree peony domestication provides new insights into the mechanisms underlying the origins of garden ornamentals and the way of preserving natural genetic resources through domestication.  相似文献   
129.
The Wilms’ tumor-associated gene WT1 encodes a tumor suppressor gene, which is implicated in renal differentiation and development of adult urogenital system. Wilms’ tumor 1-associating protein (WTAP) is initially identified as a nuclear protein that specifically interacts with WT1 in both in vitro and in vivo assays. WTAP is ubiquitously expressed in different tissues and various growth periods, and its expression is involved in cell cycle, RNA splicing and stabilization, N6-methyladenosine RNA modification, cell proliferation, and apoptosis as well as embryonic development. In the present review, we aimed to summarize the functions of WTAP in various physiological and pathological processes, in particular with regard to the current knowledge about the role of WTAP in tumorigenesis of different cancers.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号