首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52767篇
  免费   17659篇
  国内免费   4076篇
  2024年   90篇
  2023年   462篇
  2022年   1106篇
  2021年   2069篇
  2020年   3362篇
  2019年   5045篇
  2018年   4961篇
  2017年   5001篇
  2016年   5327篇
  2015年   5905篇
  2014年   5880篇
  2013年   6384篇
  2012年   4610篇
  2011年   4018篇
  2010年   4528篇
  2009年   3228篇
  2008年   2285篇
  2007年   1575篇
  2006年   1369篇
  2005年   1200篇
  2004年   1056篇
  2003年   953篇
  2002年   818篇
  2001年   640篇
  2000年   524篇
  1999年   443篇
  1998年   205篇
  1997年   164篇
  1996年   170篇
  1995年   147篇
  1994年   132篇
  1993年   92篇
  1992年   110篇
  1991年   109篇
  1990年   71篇
  1989年   57篇
  1988年   50篇
  1987年   36篇
  1986年   39篇
  1985年   42篇
  1984年   28篇
  1983年   35篇
  1982年   26篇
  1980年   15篇
  1979年   15篇
  1977年   12篇
  1975年   14篇
  1974年   13篇
  1973年   11篇
  1970年   11篇
排序方式: 共有10000条查询结果,搜索用时 937 毫秒
251.
Bletilla striata (Thunb.) Reichb.f. is a perennial herb with abundant active ingredients. Previous research mainly focused on its tubers, however, the study on flowers, especially the variation of active ingredient contents at different flowering stages, was rarely seen. This study analyzed the total phenols, flavonoids, polysaccharides, anthocyanins, and cyanidin-3-O-glucoside content of B. striata flowers which were in cultivated in Herb Garden of Zhejiang A&F University and collected in May, 2019, in order to investigate the changes in active ingredients and antioxidant capacity among different flowering stages (bud, initial, and full bloom). Changes in radical scavenging capability of DPPH (1,1-Diphenyl-2-picrylhydrazyl radical), ABTS (2,2′-azinobis(3-ethylbenzthiazoline-6-sulphonate)), and hydroxy were analyzed. Significant differences in active ingredient content of flowers were detected among different flowering stages. The total phenolic content increased continuously during the entire flowering stage. The contents of total flavonoid, total polysaccharide, and cyanidin-3-O-glucoside reached peaks at the initial blooming stage and then fell as the flowering process continued. The antioxidant activity in initial stage was the highest than in any other flowering stages. Therefore, we conclude that the initial blooming stage is the best harvesting stage of B. striata flowers. This study provides a robust basis for the harvest and utilization of B. striata flowers in food, medical, and cosmetic industries.  相似文献   
252.
253.
Zea mays (Z. mays) is one of the main cereal crops in the world, and it′s by-products have exhibited medicinal properties to explore. This article intends to review the chemical compositions and pharmacological activities of by-products of Z. mays (corn silks, roots, bract, stems, bran, and leaves) which support the therapeutic potential in the treatment of different diseases, with emphasis on the natural occurring compounds and detailed pharmacological developments. Based on this review, 231 natural compounds are presented. Among them, flavonoids, terpenes, phenylpropanoids, and alkaloids are the most frequently reported. The by-products of Z. mays possess diuretic effects, hepatoprotective, anti-diabetic, antioxidant, neuroprotective, anti-inflammatory, anti-cancer, plant protection activity, and other activities. This article reviewed the phytochemistry and pharmacological activities of Z. mays for comprehensive quality control and the safety and effectiveness to enhance future application.  相似文献   
254.
The progress of aqueous zinc batteries (AZBs) is limited by the poor cycling life due to Zn anode instability, including dendrite growth, surface corrosion, and passivation. Inspired by the anti-corrosion strategy of steel industry, a compounding corrosion inhibitor (CCI) is employed as the electrolyte additive for Zn metal anode protection. It is shown that CCI can spontaneously generate a uniform and ≈30 nm thick solid-electrolyte interphase (SEI) layer on Zn anode with a strong adhesion via Zn O bonding. This SEI layer efficiently prohibits water corrosion and guides homogeneous Zn deposition without obvious dendrite formation. This enables reversible Zn deposition and dissolution for over 1100 h under the condition of 1 mA cm−2 and 1 mAh cm−2 in symmetric cells. The Zn-MnO2 full cells with CCI-modified electrolyte deliver an ultralow capacity decay rate (0.013% per cycle) at 0.5 A g−1 over 1000 cycles. Such an innovative strategy paves a low-cost way to achieve AZBs with long lifespan.  相似文献   
255.
Genetically and phenotypically identical immune cell populations can be highly heterogenous in terms of their immune functions and protein secretion profiles. The microfluidic chip-based single-cell highly multiplexed secretome proteomics enables characterization of cellular heterogeneity of immune responses at different cellular and molecular layers. Increasing evidence has demonstrated that polyfunctional T cells that simultaneously produce 2+ proteins per cell at the single-cell level are key effector cells that contribute to the development of potent and durable cellular immunity against pathogens and cancers. The functional proteomic technology offers a wide spectrum of cellular function assessment and can uniquely define highly polyfunctional cell subsets with cytokine signatures from live individual cells. This high-dimensional single-cell analysis provides deep dissection into functional heterogeneity and helps identify predictive biomarkers and potential correlates that are crucial for immunotherapeutic product design optimization and personalized immunotherapy development to achieve better clinical outcomes.  相似文献   
256.
Several research reports delineated the significant role of miRNAs in cancer proliferation, and their modulatory role in cancer mitigation, and drug resistance. Melanoma cells have been acquiring stemness to several chemotherapeutic agents through drug efflux proteins, epigenetic modulation, and DNA repair. miRNAs could be applied as novel therapeutic modalities for treating several kinds of cancers to modulate these mechanisms involved in stemness. Nanocarriers to carry these tumor-targeting miRNAs to modulate stemness are a prominent strategy to overcome their low penetrability, minimal stability, and nonspecificity. We have searched several public databases such as PubMed, Medline, Google scholar, and NLM and obtained the information pertinent to the miRNA-based nanocarrier systems to target stemness through epigenetic modulation in melanomas. This review delineates that various miRNAs can modulate the stemness in melanomas by specific intricate epigenetic signaling, and other cell-based signaling mechanisms. Specific nanocarrier formulations with specific miRNAs are optimal methods to deliver these miRNAs in order to achieve significant entrapment efficiency, loading efficiency, and stability. Furthermore, the combinatorial regimen of FDA-approved chemotherapeutic molecules with tumor-targeting miRNAs and chemotherapy combined with nanocarriers can efficiently deliver the utmost therapeutic window by targeting tumor matrix, invasion, metastasis, and angiogenesis in melanomas. Substantial research should focus on the clinical application of this gene therapy in melanomas using these low immunogenic, highly degradable, and biocompatible combinatorial nanotherapeutic regimens.  相似文献   
257.
258.
259.
260.
Endemic species are important components of regional biodiversity and hold the key to understanding local adaptation and evolutionary processes that shape species distributions. This study investigated the biogeographic history of a relict conifer Pinus bungeana Zucc. ex Endl. confined to central China. We examined genetic diversity in P. bungeana using genotyping-by-sequencing and chloroplast and mitochondrial DNA markers. We performed spatial and temporal inference of recent genetic and demographic changes, and dissected the impacts of geography and environmental gradients on population differentiation. We then projected P. bungeana's risk of decline under future climates. We found extremely low nucleotide diversity (average π 0.0014), and strong population structure (global FST 0.234) even at regional scales, reflecting long-term isolation in small populations. The species experienced severe bottlenecks in the early Pliocene and continued to decline in the Pleistocene in the western distribution, whereas the east expanded recently. Local adaptation played a small (8%) but significant role in population diversity. Low genetic diversity in fragmented populations makes the species highly vulnerable to climate change, particularly in marginal and relict populations. We suggest that conservation efforts should focus on enhancing gene pool and population growth through assisted migration within each genetic cluster to reduce the risk of further genetic drift and extinction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号