全文获取类型
收费全文 | 5325篇 |
免费 | 467篇 |
国内免费 | 430篇 |
专业分类
6222篇 |
出版年
2024年 | 26篇 |
2023年 | 103篇 |
2022年 | 192篇 |
2021年 | 294篇 |
2020年 | 200篇 |
2019年 | 276篇 |
2018年 | 246篇 |
2017年 | 156篇 |
2016年 | 272篇 |
2015年 | 388篇 |
2014年 | 380篇 |
2013年 | 383篇 |
2012年 | 471篇 |
2011年 | 418篇 |
2010年 | 296篇 |
2009年 | 253篇 |
2008年 | 292篇 |
2007年 | 255篇 |
2006年 | 207篇 |
2005年 | 146篇 |
2004年 | 141篇 |
2003年 | 144篇 |
2002年 | 102篇 |
2001年 | 88篇 |
2000年 | 58篇 |
1999年 | 78篇 |
1998年 | 44篇 |
1997年 | 36篇 |
1996年 | 42篇 |
1995年 | 28篇 |
1994年 | 30篇 |
1993年 | 31篇 |
1992年 | 31篇 |
1991年 | 28篇 |
1990年 | 23篇 |
1989年 | 11篇 |
1988年 | 16篇 |
1987年 | 7篇 |
1986年 | 8篇 |
1985年 | 12篇 |
1984年 | 4篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1976年 | 1篇 |
排序方式: 共有6222条查询结果,搜索用时 0 毫秒
31.
Adelson JD Barreto GE Xu L Kim T Brott BK Ouyang YB Naserke T Djurisic M Xiong X Shatz CJ Giffard RG 《Neuron》2012,73(6):1100-1107
Recovery from stroke engages mechanisms of neural plasticity. Here we examine a role for MHC class I (MHCI) H2-Kb and H2-Db, as well as PirB receptor. These molecules restrict synaptic plasticity and motor learning in the healthy brain. Stroke elevates neuronal expression not only of H2-Kb and H2-Db, but also of PirB and downstream signaling. KbDb knockout (KO) or PirB KO mice have smaller infarcts and enhanced motor recovery. KO hippocampal organotypic slices, which lack an intact peripheral immune response, have less cell death after in?vitro ischemia. In PirB KO mice, corticospinal projections from the motor cortex are enhanced, and the reactive astrocytic response is dampened after MCAO. Thus, molecules that function in the immune system act not only to limit synaptic plasticity in healthy neurons, but also to exacerbate brain injury after ischemia. These results suggest therapies for stroke by targeting MHCI and PirB. 相似文献
32.
During the development of the spinal cord, proliferative neural progenitors differentiate into postmitotic neurons with distinct fates. How cells switch from progenitor states to differentiated fates is poorly understood. To address this question, we studied the differentiation of progenitors in the zebrafish spinal cord, focusing on the differentiation of Kolmer-Agduhr″ (KA″) interneurons from lateral floor plate (LFP) progenitors. In vivo cell tracking demonstrates that KA″ cells are generated from LFP progenitors by both symmetric and asymmetric cell divisions. A photoconvertible reporter of signaling history (PHRESH) reveals distinct temporal profiles of Hh response: LFP progenitors continuously respond to Hh, while KA″ cells lose Hh response upon differentiation. Hh signaling is required in LFP progenitors for KA″ fate specification, but prolonged Hh signaling interferes with KA″ differentiation. Notch signaling acts permissively to maintain LFP progenitor cells: activation of Notch signaling prevents differentiation, whereas inhibition of Notch signaling results in differentiation of ectopic KA″ cells. These results indicate that neural progenitors depend on Notch signaling to maintain Hh responsiveness and rely on Hh signaling to induce fate identity, whereas proper differentiation depends on the attenuation of both Notch and Hh signaling. 相似文献
33.
34.
James G. Burchfield Jinling Lu Daniel J. Fazakerley Shi‐Xiong Tan Yvonne Ng Katarina Mele Michael J. Buckley William E. Hughes David E. James 《Traffic (Copenhagen, Denmark)》2013,14(3):259-273
Regulated GLUT4 trafficking is a key action of insulin. Quantitative stepwise analysis of this process provides a powerful tool for pinpointing regulatory nodes that contribute to insulin regulation and insulin resistance. We describe a novel GLUT4 construct and workflow for the streamlined dissection of GLUT4 trafficking; from simple high throughput screens to high resolution analyses of individual vesicles. We reveal single cell heterogeneity in insulin action highlighting the utility of this approach – each cell displayed a unique and highly reproducible insulin response, implying that each cell is hard‐wired to produce a specific output in response to a given stimulus. These data highlight that the response of a cell population to insulin is underpinned by extensive heterogeneity at the single cell level. This heterogeneity is pre‐programmed within each cell and is not the result of intracellular stochastic events. 相似文献
35.
Qiang‐Qiang Xiong Tian‐Hua Shen Lei Zhong Chang‐Lan Zhu Xiao‐Song Peng Xiao‐Peng He Jun‐Ru Fu Lin‐Juan Ouyang Jian‐Min Bian Li‐Fang Hu Xiao‐Tang Sun Jie Xu Hui‐Ying Zhou Hao‐Hua He Xiao‐Rong Chen 《Physiologia plantarum》2019,167(4):564-584
Abrupt drought–flood alternation (T1) is a meteorological disaster that frequently occurs during summer in southern China and the Yangtze river basin, often causing a significant loss of rice production. In this study, the response mechanism of yield decline under abrupt drought–flood alternation stress at the panicle differentiation stage was analyzed by looking at the metabolome, proteome as well as yield and physiological and biochemical indexes. The results showed that drought and flood stress caused a decrease in the yield of rice at the panicle differentiation stage, and abrupt drought–flood alternation stress created a synergistic effect for the reduction of yield. The main reason for the decrease of yield per plant under abrupt drought–flood alternation was the decrease of seed setting rate. Compared with CK0 (no drought and no flood), the net photosynthetic rate and soluble sugar content of T1 decreased significantly and its hydrogen peroxidase, superoxide dismutase, peroxidase activity increased significantly. The identified differential metabolites and differentially expressed proteins indicated that photosynthesis metabolism, energy metabolism pathway and reactive oxygen species response have changed strongly under abrupt drought–flood alteration stress, which are factors that leads to the rice grain yield reduction. 相似文献
36.
Xiong Zhang Ming-You Peng En-Ming Feng Qing-Dan Li Lu Chen Hu-Cheng Yang Bing Guo Hong Liang Ying-Tong Di Lei Tang Ying Yan 《化学与生物多样性》2023,20(10):e202301061
Three previously undescribed diterpenoids, helioscopnoids A–C, and eight known compounds were isolated from the whole plants of Euphorbia helioscopia. Their structures were established by extensive analysis of spectra and data comparison with previous literatures. Among them, compound 4 was identified as 24,24-dimethoxy-25,26,27-trinoreuphan-3β-ol with revised configurations of C-13, C-14, and C-17 (13R*, 14R*, 17R*). Cytotoxicity assays revealed that all compounds exhibited varying levels of cytotoxicity against H1975 cells, with compound 9 displaying the most potent activity, as indicated by cell viability rates of 18.13 % and 20.76 % at concentrations of 20 μM and 5 μM, respectively. This study expands the understanding of E. helioscopia terpenoids’ structural diversity and biological activities, contributing to the exploration of potential therapeutic applications. 相似文献
37.
During the course of the transmissible spongiform encephalopathy diseases, a protease-resistant ordered aggregate of scrapie prion protein (PrP(Sc)) accumulates in affected animals. From mechanistic and therapeutic points of view, it is relevant to determine the extent to which PrP(Sc) formation and aggregation are reversible. PrP(Sc) solubilized with 5 m guanidine hydrochloride (GdnHCl) was unfolded to a predominantly random coil conformation. Upon dilution of GdnHCl, PrP refolded into a conformation that was high in alpha-helix as measured by CD spectroscopy, similar to the normal cellular isoform of PrP (PrP(C)). This provided evidence that PrP(Sc) can be induced to revert to a PrP(C)-like conformation with a strong denaturant. To examine the reversibility of PrP(Sc) formation and aggregation under more physiological conditions, PrP(Sc) aggregates were washed and resuspended in buffers lacking GdnHCl and monitored over time for the appearance of soluble PrP. No dissociation of PrP from the PrP(Sc) aggregates was detected in aqueous buffers at pH 6 and 7.5. The effective solubility of PrP was <0.7 nm. Treatment of PrP(Sc) with proteinase K (PK) before the analysis did not enhance the dissociation of PrP from the PrP(Sc) aggregates. Treatment with 2.5 m GdnHCl, which partially and reversibly unfolds PrP(Sc), caused only limited dissociation of PrP from the aggregates. The PrP that dissociated from the aggregates over time was entirely PK-sensitive, like PrP(C), whereas all of the aggregated PrP was partially PK-resistant. PrP also dissociated from aggregates of protease-resistant PrP generated in a cell-free conversion reaction, but only if treated with GdnHCl. Overall, the results suggest that PrP aggregation is not appreciably reversible under physiological conditions, but dissociation and refolding can be enhanced by treatments with GdnHCl. 相似文献
38.
Xiaodong Guo Lu Xiong Lin Zou Ting Sun Jing Zhang Hanwei Li Ruiyun Peng Jingmin Zhao 《Diagnostic pathology》2012,7(1):1-7
Background
To investigate the expression of Golgi phosphoprotein-3 (GOLPH3) in prostate cancer and determine its prognostic value.Methods
Immunohistochemical staining for GOLPH3 was performed on tissue microarrays of 342 prostate patients. The correlation between GOLPH3 expression with its clinicopathologic factors was also analyzed in order to determine its prognostic significance.Results
GOLPH3 expression of normal prostate tissues, benign prostate hyperplasia, high-grade prostatic intraepithelial neoplasia, and hormone-dependent prostate cancer (HDPC) did not show any statistically significant difference. In contrast, statistically significant difference was reported in moderate/intense GOLPH3 expression in cases diagnosed with HDPC and castration resistant prostate cancer (CRPC) (P < 0.0005). Moderate /intense expression of GOLPH3 was associated with androgen independence (P?=?0.012), higher Gleason score (P?=?0.017), bone metastasis (P?=?0.024), higher baseline prostate-specific antigen (PSA) (P?=?0.038), and higher PSA nadir (P?=?0.032). A significantly negative correlation was found between moderate/intense GOLPH3 expression and disease-free survival (DFS) (HR?=?0.28, P?=?0.012) and overall survival (OS) (HR?=?0.42, P?=?0.027). Univariated analysis indicated that moderate/intense GOLPH3 expression created a significantly prognostic impact in patients with CRPC. On the other hand, multivariate analysis indicated that GOLPH3 was a significantly independent prognostic factor of DFS (P?=?0.027) in all prostate cancer patients.Conclusions
In this study, it was discovered that the overexpression of GOLPH3 is associated with the transition of prostate cancer from hormone sensitive phase to hormone refractory phase. GOLPH3 might be an important prognostic factor of DFS and OS in patients with prostate cancer. In totality, GOLPH3 could be used as a novel candidate in devising a more effective therapeutic strategy to tackle CRPC.Virtual slides
The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1452541171722856. 相似文献39.
Regulated movements of the nucleus are essential during zygote formation, cell migrations, and differentiation of neurons. The nucleus moves along microtubules (MTs) and is repositioned on F-actin at the cellular cortex. Two families of nuclear envelope proteins, SUN and KASH, link the nucleus to the actin and MT cytoskeletons during nuclear movements. However, the role of actin nucleators in nuclear migration and positioning is poorly understood. We show that the branched actin nucleator, Arp2/3, affects nuclear movements throughout embryonic and larval development in C. elegans, including nuclear migrations in epidermal cells and neuronal precursors. In one-cell embryos the migration of the male pronucleus to meet the female pronucleus after fertilization requires Arp2/3. Loss of Arp2/3 or its activators changes the dynamics of non-muscle myosin, NMY-2, and alters the cortical accumulation of posterior PAR proteins. Reduced establishment of the posterior microtubule cytoskeleton in Arp2/3 mutants correlates with reduced male pronuclear migration. The UNC-84/SUN nuclear envelope protein that links the nucleus to the MT and actin cytoskeleton is known to regulate later nuclear migrations. We show here it also positions the male pronucleus. These studies demonstrate a global role for Arp2/3 in nuclear migrations. In the C. elegans one-cell embryo Arp2/3 promotes the establishment of anterior/posterior polarity and promotes MT growth that propels the anterior migration of the male pronucleus. In contrast with previous studies emphasizing pulling forces on the male pronucleus, we propose that robust MT nucleation pushes the male pronucleus anteriorly to join the female pronucleus. 相似文献
40.
Cloning, sequence analysis and identification of a nonsense mutation-mediated mRNA decay of porcine GSTM2 gene 总被引:2,自引:0,他引:2
Huang J Xiong Y Deng C Zuo B Xu D Lei M Jiang S 《Acta biochimica et biophysica Sinica》2007,39(8):560-566
The glutathione S-transferase mu 2 gene (GSTM2) encodes a GST functioning in the elimination of electrophilic compounds and the regulation of cell growth. In this study, the sequence of porcine GSTM2 gene that contains the complete sequence encoding a protein of 218 amino acids was cloned. The deduced amino acid sequence shared 76%, 78% and 76% identity with that of human, mouse and rat, respectively, mRNA expression analysis showed that the porcine GSTM2 gene was expressed at a high level in liver and testis, at a medium level in longissimus dorsi muscle, adipose tissue, spleen and lung, at a low level in kidney, and at a very low level in heart and embryo. A nonsense mutation (CGA→TGA) resulted from C27T substitution in the fifth exon to produce a premature translation termination codon was identified, and it was discovered that nonsense-mediated mRNA decay might have an effect on the regulation of porcine GSTM2 gene expression. This polymorphism was analyzed in Large White, Landrace, Meishan and Qingping pig populations using the Taq I-polymerase chain reaction-restriction fragment length polymorphism method. The result showed that allele C had a higher frequency than allele T in each population. 相似文献