Aquaporin Z (AqpZ), a typical orthodox aquaporin with six transmembrane domains, was expressed as a fusion protein with TrxA
in E. coli in our previous work. In the present study, three fusion partners (DsbA, GST and MBP) were employed to improve the expression
level of this channel protein in E. coli. The result showed that, compared with the expression level of TrxA-AqpZ, five- to 40-fold increase in the productivity of
AqpZ with fusion proteins was achieved by employing these different fusion partners, and MBP was the most efficient fusion
partner to increase the expression level. By using E. coli C43 (DE3)/pMAL-AqpZ, the effects of different expression conditions were investigated systematically to improve the expression
level of MBP-AqpZ in E. coli. The high productivity of MBP-AqpZ (200 mg/l) was achieved under optimized conditions. The present work provides a novel
approach to improve the expression level of membrane proteins in E. coli. 相似文献
The Na+-K+--ATPase, or Na+ pump, is a member of the P-type ATPase superfamily. In addition to pumping ions, Na+-K+--ATPase is engaged in assembly of multiple protein complexes that transmit signals to different intracellular compartments. The signaling function of the enzyme appears to have been acquired through the evolutionary incorporation of many specific binding motifs that interact with proteins and ligands. In some cell types the signaling Na+ --ATPase and its protein partners are compartmentalized in coated pits (i.e., caveolae) the plasma membrane. Binding of ouabain to the signaling Na+-K+--ATPase activates the cytoplasmic tyrosine kinase Src, resulting in the formation of an active "binary receptor" that phosphorylates and assembles other proteins into different signaling modules. This in turn activates multiple protein kinase cascades including mitogen-activated protein kinases and protein kinase C isozymes in a cell-specific manner. It also increases mitochondrial production of reactive oxygen species (ROS)and regulates intracellular calcium concentration. Crosstalk among the activated pathways eventually results in changes in the expression of a number of genes. Although ouabain stimulates hypertrophic growth in cardiac myocytes and proliferation in smooth muscle cells, it also induces apoptosis in many malignant cells. Finally, the signaling function of the enzyme is also pivotal to ouabain-induced nongenomic effects on cardiac myocytes. 相似文献
Caveolin-1 is the primary structural component of endothelial caveolae that is essential for transcellular trafficking of albumin and is also a critical scaffolding protein that regulates the activity of signaling molecules in caveolae. Phosphorylation of caveolin-1 plays a fundamental role in the mechanism of oxidant-induced vascular hyper permeability. However, the regulatory mechanism of caveolin-1 phosphorylation remains unclear. Here we identify a previously unexpected role for AMPK in inhibition of caveolin-1 phosphorylation under oxidative stress. A pharmacological activator of AMPK, 5-amino-4-imidazole carboxamide riboside (AICAR), inhibited oxidative stress-induced phosphorylation of both caveolin-1 and c-Abl, which is the major kinase of caveolin-1, and endocytosis of albumin in human umbilical vein endothelial cell. These effects were abolished by treatment with two specific inhibitors of AICAR, dipyridamole, and 5-iodotubericidin. Consistently, knockdown of the catalytic AMPKα subunit by siRNA abolished the inhibitory effect of AICAR on oxidant-induced phosphorylation of both caveolin-1 and c-Abl. Pretreatment with specific c-Abl inhibitor, imatinib mesylate, and knock down of c-Abl significantly decreased the caveolin-1 phosphorylation after H2O2 exposure and abolished the inhibitory effect of AICAR on the caveolin-1 phosphorylation. Interestingly, knockdown of Prdx-1, an antioxidant enzyme associated with c-Abl, increased phosphorylation of both caveolin-1 and c-Abl and abolished the inhibitory effect of AICAR on the caveolin-1 phosphorylation. Furthermore, co-immunoprecipitation experiment showed that AICAR suppressed the oxidant-induced dissociation between c-Abl and Prdx1. Overall, our results suggest that activation of AMPK inhibits oxidative stress-induced caveolin-1 phosphorylation and endocytosis, and this effect is mediated in part by stabilizing the interaction between c-Abl and Prdx-1. 相似文献
Tramadol hydrochloride (TH), has become the most prescribed opioid worldwide. However, its neurotoxicity and abuse potential are not well documented. In the present study, TH administration induced abnormal behavior and body and brain mean weight loss. Two principal metabolites O- and N-desmethyltramadol were detected in the brain tissue, and N-desmethyltramadol was the main metabolite produced. A total of 30 differential protein spots were identified using semi-quantitative 2D-PAGE and proteomic analyses, and classified into 13 categories, in which subtypes of 14-3-3 proteins, creatine kinase, ATP synthase beta chain, and tubulin were identified at the separated location on the gels 3, 3, 4, and 11 times respectively. Many TH responsive proteins have functions related to oxidative stress, including 14-3-3 proteins, creatine kinase BB, ubiquitin carboxy-terminal hydrolase L-1, ATP synthase, synaptosome-associated protein, tubulin and actin. Irrespective of oxidative damage, other pathways affected include apoptosis, energy metabolism, signal disorders, and cytoskeletal structure. Ultrastructural observation of mitochondria showed a series of morphological changes in the case of TH exposure. 相似文献
Necroptosis is a programmed necrosis that is mediated by receptor-interacting protein kinases RIPK1, RIPK3 and the mixed lineage kinase domain-like protein, MLKL. Necroptosis must be strictly regulated to maintain normal tissue homeostasis, and dysregulation of necroptosis leads to the development of various inflammatory, infectious, and degenerative diseases. Ubiquitylation is a widespread post-translational modification that is essential for balancing numerous physiological processes. Over the past decade, considerable progress has been made in the understanding of the role of ubiquitylation in regulating necroptosis. Here, we will discuss the regulatory functions of ubiquitylation in necroptosis signaling pathway. An enhanced understanding of the ubiquitylation enzymes and regulatory proteins in necroptotic signaling pathway will be exploited for the development of new therapeutic strategies for necroptosis-related diseases.