首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3801篇
  免费   340篇
  国内免费   325篇
  4466篇
  2024年   7篇
  2023年   45篇
  2022年   110篇
  2021年   201篇
  2020年   131篇
  2019年   165篇
  2018年   155篇
  2017年   123篇
  2016年   184篇
  2015年   224篇
  2014年   249篇
  2013年   282篇
  2012年   320篇
  2011年   290篇
  2010年   185篇
  2009年   165篇
  2008年   205篇
  2007年   154篇
  2006年   167篇
  2005年   145篇
  2004年   138篇
  2003年   107篇
  2002年   115篇
  2001年   97篇
  2000年   85篇
  1999年   79篇
  1998年   47篇
  1997年   44篇
  1996年   38篇
  1995年   34篇
  1994年   28篇
  1993年   21篇
  1992年   19篇
  1991年   23篇
  1990年   11篇
  1989年   6篇
  1988年   10篇
  1987年   14篇
  1986年   8篇
  1985年   8篇
  1984年   8篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有4466条查询结果,搜索用时 0 毫秒
141.
Unlike somatic cells mitosis, germ cell meiosis consists of 2 consecutive rounds of division that segregate homologous chromosomes and sister chromatids, respectively. The meiotic oocyte is characterized by an absence of centrioles and asymmetric division. Centriolin is a relatively novel centriolar protein that functions in mitotic cell cycle progression and cytokinesis. Here, we explored the function of centriolin in meiosis and showed that it is localized to meiotic spindles and concentrated at the spindle poles and midbody during oocyte meiotic maturation. Unexpectedly, knockdown of centriolin in oocytes with either siRNA or Morpholino micro-injection, did not affect meiotic spindle organization, cell cycle progression, or cytokinesis (as indicated by polar body emission), but led to a failure of peripheral meiotic spindle migration, large polar body emission, and 2-cell like oocytes. These data suggest that, unlike in mitotic cells, the centriolar protein centriolin does not regulate cytokinesis, but plays an important role in regulating asymmetric division of meiotic oocytes.  相似文献   
142.
A reliable nuclear transfer method was first reported in 1983; it provided definite evidence that parthenogenetic embryos are lethal at early postimplantation in mammals. Subsequently, nuclear transfer has been extensively used as an important and versatile tool for investigating embryo and somatic-cell cloning and nucleo-cytoplasmic interactions. Further development of this technique has enabled the generation of bimaternal embryos containing two haploid sets of maternal genomes from female germ cells of different origins. By using a 2-d nuclear transfer system for oocyte reconstruction, viable mice can be produced solely from maternal genomes, without the participation of the paternal genome. This oocyte reconstruction system, as described in this protocol, could provide valuable guidelines for exploring the potential endowments of gametes and for conferring novel properties to them.  相似文献   
143.
从73个尖孢镰孢(Fusarium oxysporum)不同专化型菌株上获得684个硝酸盐营养突变株(nit mutant)。作相关氮源利用试验及亚硝酸反应后,鉴定出一新硝酸盐营养突变类型:亚硝酸盐还原酶结构基因类型,命名为nit8,占总突变株的6.7%。同时被鉴别的还有nit1、nit3和Nit M三种突变类型,它们分别占突变株总数的81.0%,3.8%和8.5%。此外,首次引入一种亚硝酸反应在这类研究中的应用,还提出了互补指数概念与公式来表示nit突变株营养体之间亲和的能力。  相似文献   
144.
Zinc-a2-glycoprotien (AZGP1) involved in lipid metabolism and associated with adipose tissue atrophy in cachexia. And it also related to sperm motility and in turn fertilization. To ascertain whether there were mutations in the bovine AZGP1 gene, this study investigated variation of the AZGP1 gene through PCR-SSCP and sequencing. Four missense mutations were identified in 649 cattle from six independent populations. Haplotype frequencies and linkage disequilibrium (LD) coefficients of these SNPs in three Chinese indigenous cattle breeds were analyzed. One LD block was found in three cattle breeds. The statistical analyses indicated that AC genotype of Z4 locus was associated with the high body weight, body length and chest girth in Jiaxian cattle breed (P?<?0.05). Our results provided evidence that polymorphisms in the AZGP1 gene were associated with growth traits, and may be used for marker-assisted selection and management in cattle breeding program.  相似文献   
145.
Nanomedicine is an emerging field that integrates nanotechnology, biomolecular engineering, life sciences and medicine; it is expected to produce major breakthroughs in medical diagnostics and therapeutics. Due to the size-compatibility of nano-scale structures and devices with proteins and nucleic acids, the design, synthesis and application of nanoprobes, nanocarriers and nanomachines provide unprecedented opportunities for achieving a better control of biological processes, and drastic improvements in disease detection, therapy, and prevention. Recent advances in nanomedicine include the development of functional nanoparticle based molecular imaging probes, nano-structured materials as drug/gene carriers for in vivo delivery, and engineered molecular machines for treating single-gene disorders. This review focuses on the development of molecular imaging probes and engineered nucleases for nanomedicine, including quantum dot bioconjugates, quantum dot-fluorescent protein FRET probes, molecular beacons, magnetic and gold nanoparticle based imaging contrast agents, and the design and validation of zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs) for gene targeting. The challenges in translating nanomedicine approaches to clinical applications are discussed.  相似文献   
146.
Root-associated microbiomes play significant roles in plant productivity, health and ecological services. However, our current understanding of the microbial assemblages in the rhizosphere and endosphere of herbage is still limited. To gain insights into these microbial assemblages, Illumina MiSeq high-throughput sequencing was performed to investigate the characteristics of microbial communities of an herbage, Leymus chinensis. Hierarchical clustering analysis and principal coordinate analysis (PCoA) results showed that microbial communities of the rhizosphere and endosphere samples were clearly distinguished. Rhizosphere soil communities showed a greater sensitivity than root endosphere communities using linear discriminant analysis (LDA) effect size (LEfSe). Rhizosphere and endosphere communities performed their respective functions in the soil as a cohesive collective, and Rhizobiales were observed to function as generalists. Redundancy analysis (RDA) and variance partitioning analysis (VPA) results revealed that the contribution of the interaction between soil physicochemical parameters and soil enzymes was greater than their individual contributions. In summary, this study is the first to elucidate the microbial diversity and community structure of L. chinensis and compare the diversity and composition between rhizospheric and endosphere microbiomes.  相似文献   
147.
The purpose of this study was to investigate immunolocalization of collagenolytic enzymes including cathepsin K, matrix metalloproteinase (MMP) 1 and 2 in the compressed periodontal ligament (PDL) during orthodontic tooth movement using a periostin deficient (Pn-/-) mouse model. Twelve-week-old male mice homozygous for the disrupted periostin gene and their wild type (WT) littermates were used in these experiments. The tooth movement was performed according to Waldo’s method, in which elastic bands of 0.5 mm thickness were inserted between the first and second upper molars of mice under anesthesia. At 1 and 3 days after orthodontic force application, mice were fixed with transcardial perfusion of 4 % paraformaldehyde in 0.1 M phosphate buffer (pH 7.4), and the first molars and peripheral alveolar bones were extracted for histochemical analyses. Compared with WT mice, immunolocalization of cathepsin K, MMP1 and MMP2 was significantly decreased at 1 and 3 days after orthodontic tooth movement in the compressed PDL of Pn-/- mice, although MMP1-reactivity and MMP2-reactivity decreased at different amounts. Very little cathepsin K-immunoreactivity was observed in the assessed regions of Pn-/- mice, both before and after orthodontic force application. Furthermore, Pn-/- mice showed a much wider residual PDL than WT mice. Taken together, we concluded that periostin plays an essential role in the function of collagenolytic enzymes like cathepsin K, MMP1 and MMP2 in the compressed PDL after orthodontic force application.  相似文献   
148.
Phosphorus is a major nutrient vital for plant growth and development, with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids. Here, we report that NON-SPECIFIC PHOSPHOLIPASE C4 (NPC4) in rapeseed (Brassica napus) releases phosphate from phospholipids to promote growth and seed yield, as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated knockout of BnaNPC4 led to elevated accumulation of phospholipids and decreased growth, whereas overexpression (OE) of BnaNPC4 resulted in lower phospholipid contents and increased plant growth and seed production. We demonstrate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro, and plants with altered BnaNPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots, with a greater change in glycerolipids than sphingolipids in leaves, particularly under phosphate deficiency conditions. In addition, BnaNPC4-OE plants led to the upregulation of genes involved in lipid metabolism, phosphate release, and phosphate transport and an increase in free inorganic phosphate in leaves. These results indicate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号