首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28644篇
  免费   2416篇
  国内免费   1887篇
  2024年   42篇
  2023年   279篇
  2022年   707篇
  2021年   1258篇
  2020年   852篇
  2019年   1090篇
  2018年   1106篇
  2017年   859篇
  2016年   1231篇
  2015年   1812篇
  2014年   2134篇
  2013年   2217篇
  2012年   2631篇
  2011年   2467篇
  2010年   1458篇
  2009年   1432篇
  2008年   1622篇
  2007年   1439篇
  2006年   1317篇
  2005年   1083篇
  2004年   1065篇
  2003年   893篇
  2002年   683篇
  2001年   494篇
  2000年   415篇
  1999年   395篇
  1998年   270篇
  1997年   220篇
  1996年   228篇
  1995年   186篇
  1994年   169篇
  1993年   92篇
  1992年   147篇
  1991年   113篇
  1990年   118篇
  1989年   84篇
  1988年   67篇
  1987年   72篇
  1986年   43篇
  1985年   60篇
  1984年   41篇
  1983年   18篇
  1982年   12篇
  1981年   10篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1967年   2篇
  1964年   1篇
  1962年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
Most environmental perturbations have a direct or indirect deleterious impact on photosynthesis, and, in consequence, the overall energy status of the cell. Despite our increased understanding of convergent energy and stress signals, the connections between photosynthesis, energy and stress signals through putative common nodes are still unclear. Here we identified an endoplasmic reticulum (ER)-localized adenine nucleotide transporter1 (ER-ANT1), whose deficiency causes seedling lethality in air but viable under high CO2, exhibiting the typical photorespiratory phenotype. Metabolic analysis suggested that depletion of ER-ANT1 resulted in circadian rhythm disorders in sucrose synthesis and induced sucrose signaling pathways, indicating that the ER is involved in the regulation of vital energy metabolism in plants. In addition, the defect of ER-ANT1 triggers ER stress and activates the unfolded protein response in plant cells, suggesting ER stress and photorespiration are closely linked. These findings provide an important evidence for a key role of ER-localized ER-ANT1 in convergent energy and stress signals in rice. Our findings support the idea that ATP is a central signal involved in the plant response to a variety of stresses.  相似文献   
963.
964.
965.
966.
967.
968.
The Beclin1–VPS34 complex is recognized as a central node in regulating autophagy via interacting with diverse molecules such as ATG14L for autophagy initiation and UVRAG for autophagosome maturation. However, the underlying molecular mechanism that coordinates the timely activation of VPS34 complex is poorly understood. Here, we identify that PAQR3 governs the preferential formation and activation of ATG14L‐linked VPS34 complex for autophagy initiation via two levels of regulation. Firstly, PAQR3 functions as a scaffold protein that facilitates the formation of ATG14L‐ but not UVRAG‐linked VPS34 complex, leading to elevated capacity of PI(3)P generation ahead of starvation signals. Secondly, AMPK phosphorylates PAQR3 at threonine 32 and switches on PI(3)P production to initiate autophagosome formation swiftly after glucose starvation. Deletion of PAQR3 leads to reduction of exercise‐induced autophagy in mice, accompanied by a certain degree of disaggregation of ATG14L‐associated VPS34 complex. Together, this study uncovers that PAQR3 can not only enhance the capacity of pro‐autophagy class III PI3K due to its scaffold function, but also integrate AMPK signal to activation of ATG14L‐linked VPS34 complex upon glucose starvation.  相似文献   
969.
970.
Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental‐scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species‐independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age‐dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species‐dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号